2,464 research outputs found

    Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating

    Get PDF
    Catheter associated urinary tract infections (CA-UTIs) are the most common health related infections world wide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infections, new materials that resist bacterial biofilm formation are needed. A composite catheter material, consisting of bulk PDMS coated with a novel bacterial biofilm resistant polyacrylate (EGDPEA–co-DEGMA) has been proposed. The coated material shows excellent bacterial resistance when compared to commercial catheter materials but delamination of the coatings under mechanical stress presents a challenge. In this work, the use of oxygen plasma treatment to improve the wettability and reactivity of the PDMS catheter material and improve adhesion with the EGDPEA–co-DEGMA coating has been investigated. Argon Cluster 3D-imaging Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) has been used to probe the buried adhesive interface between the EGDPEA–co-DEGMA coating and the treated PDMS. ToF-SIMS analysis was performed in both dry and frozen-hydrated states and results were compared to mechanical tests. From the ToF-SIMS data we have been able to observe the presence of PDMS, silicates, salt particles, cracks and water at the adhesive interface. In the dry catheters, low molecular weight PDMS oligomers at the interface were associated with poor adhesion. When hydrated, the hydrophilic silicates attracted water to the interface and led to easy delamination of the coating. The best adhesion results, under hydrated conditions, were obtained using a combination of 5 min O2 plasma treatment and silane primers. Cryo-ToF-SIMS analysis of the hydrated catheter material showed that the bond between the primed PDMS catheter and the EGDPEA–co-DEGMA coating was stable in the presence of water. The resulting catheter material was resisted Escherichia coli and Proteus mirabilis biofilm colonization by up to 95 % compared with uncoated PDMS after 10 days of continuous bacterial exposure and had the mechanical properties necessary for use as a urinary catheter

    Link between supercurrent diode and anomalous Josephson effect revealed by gate-controlled interferometry

    Full text link
    In Josephson diodes the asymmetry between positive and negative current branch of the current-phase relation leads to a polarity-dependent critical current and Josephson inductance. The supercurrent nonreciprocity can be described as a consequence of the anomalous Josephson effect -- a φ0\varphi_0-shift of the current-phase relation -- in multichannel ballistic junctions with strong spin-orbit interaction. In this work, we simultaneously investigate φ0\varphi_0-shift and supercurrent diode efficiency on the same Josephson junction by means of a superconducting quantum interferometer. By electrostatic gating, we reveal a direct link between φ0\varphi_0-shift and diode effect. Our findings show that the supercurrent diode effect mainly results from magnetochiral anisotropy induced by spin-orbit interaction in combination with a Zeeman field.Comment: 15 pages, 8 figure

    Sign reversal of the AC and DC supercurrent diode effect and 0-Ï€\pi-like transitions in ballistic Josephson junctions

    Full text link
    The recent discovery of intrinsic supercurrent diode effect, and its prompt observation in a rich variety of systems, has shown that nonreciprocal supercurrents naturally emerge when both space- and time-inversion symmetries are broken. In Josephson junctions, nonreciprocal supercurrent can be conveniently described in terms of spin-split Andreev states. Here, we demonstrate a sign reversal of the supercurrent diode effect, in both its AC and DC manifestations. In particular, the AC diode effect -- i.e., the asymmetry of the Josephson inductance as a function of the supercurrent -- allows us to probe the current-phase relation near equilibrium. Using a minimal theoretical model, we can then link the sign reversal of the AC diode effect to the so-called 0-Ï€\pi-like transition, a predicted, but still elusive feature of multi-channel junctions. Our results demonstrate the potential of inductance measurements as sensitive probes of the fundamental properties of unconventional Josephson junctions.Comment: 13 pages, 6 figure

    The pharmaceutical use of permethrin: Sources and behavior during municipal sewage treatment

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Springer Science+Business Media, LLC.Permethrin entered use in the 1970s as an insecticide in a wide range of applications, including agriculture, horticultural, and forestry, and has since been restricted. In the 21st century, the presence of permethrin in the aquatic environment has been attributed to its use as a human and veterinary pharmaceutical, in particular as a pedeculicide, in addition to other uses, such as a moth-proofing agent. However, as a consequence of its toxicity to fish, sources of permethrin and its fate and behavior during wastewater treatment are topics of concern. This study has established that high overall removal of permethrin (approximately 90%) was achieved during wastewater treatment and that this was strongly dependent on the extent of biological degradation in secondary treatment, with more limited subsequent removal in tertiary treatment processes. Sources of permethrin in the catchment matched well with measured values in crude sewage and indicated that domestic use accounted for more than half of the load to the treatment works. However, removal may not be consistent enough to achieve the environmental quality standards now being derived in many countries even where tertiary treatment processes are applied.United Utilities PL

    Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS

    Full text link
    TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E >> 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment. The source is detected at 8.7 standard deviations (σ\sigma) and is found to be extended and asymmetric with a width of 9.5′^{\prime}±\pm1.2′^{\prime} along the major axis and 4.0′^{\prime}±\pm0.5′^{\prime} along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 ±\pm 0.14stat_{stat} ±\pm 0.21sys_{sys} and a normalization of (9.5 ±\pm 1.6stat_{stat} ±\pm 2.2sys_{sys}) ×\times 10−13^{-13}TeV−1^{-1} cm−2^{-2} s−1^{-1} at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula (PWN) interpretation

    Investigating the TeV Morphology of MGRO J1908+06 with VERITAS

    Full text link
    We report on deep observations of the extended TeV gamma-ray source MGRO J1908+06 made with the VERITAS very high energy (VHE) gamma-ray observatory. Previously, the TeV emission has been attributed to the pulsar wind nebula (PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a significance level of 14 standard deviations (14 sigma) and measure a photon index of 2.20 +/- 0.10_stat +/- 0.20_sys. The TeV emission is extended, covering the region near PSR J1907+0602 and also extending towards SNR G40.5--0.5. When fitted with a 2-dimensional Gaussian, the intrinsic extension has a standard deviation of sigma_src = 0.44 +/- 0.02 degrees. In contrast to other TeV PWNe of similar age in which the TeV spectrum softens with distance from the pulsar, the TeV spectrum measured near the pulsar location is consistent with that measured at a position near the rim of G40.5--0.5, 0.33 degrees away.Comment: To appear in ApJ, 8 page

    Discovery of Very High Energy Gamma Rays from 1ES 1440+122

    Full text link
    The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85 GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes. The observations, taken between 2008 May and 2010 June and totalling 53 hours, resulted in the discovery of γ\gamma-ray emission from the blazar, which has a redshift zz=0.163. 1ES 1440+122 is detected at a statistical significance of 5.5 standard deviations above the background with an integral flux of (2.8±0.7stat±0.8sys\pm0.7_{\mathrm{stat}}\pm0.8_{\mathrm{sys}}) ×\times 10−12^{-12} cm−2^{-2} s−1^{-1} (1.2\% of the Crab Nebula's flux) above 200 GeV. The measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with a photon index of 3.1 ±\pm 0.4stat_{\mathrm{stat}} ±\pm 0.2sys_{\mathrm{sys}}. Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope (0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally used to model the properties of the emission region. A synchrotron self-Compton model produces a good representation of the multi-wavelength data. Adding an external-Compton or a hadronic component also adequately describes the data.Comment: 8 pages, 4 figures. Accepted for publication in MNRA
    • …
    corecore