229 research outputs found

    Maintenance of a gluten free diet in coeliac disease: The roles of self-regulation, habit, psychological resources, motivation, support, and goal priority

    Get PDF
    Introduction: A strict lifelong gluten free diet (GFD) is the only treatment for coeliac disease (CD). Theory-based research has focused predominantly on initiation, rational, and motivational processes in predicting adherence. The aim of this study was to evaluate an expanded collection of theoretical constructs specifically relevant to the maintenance of behaviour change, in the understanding and prediction of GFD adherence. Methods: Respondents with CD (N = 5573) completed measures of GFD adherence, psychological distress, intentions, self-efficacy, and the maintenance-relevant constructs of self-regulation, habit, temptation and intentional and unintentional lapses (cognitive and behavioural consequences of lowered or fluctuating psychological resources and self-control), motivation, social and environmental support, and goal priority, conflict, and facilitation. Correlations and multiple regression were used to determine their influence on adherence, over and above intention and self-efficacy, and how relationships changed in the presence of distress. Results: Better adherence was associated with greater self-regulation, habit, self-efficacy, priority, facilitation, and support; and lower psychological distress, conflict, and fewer self-control lapses (e.g., when busy/stressed). Autonomous and wellbeing-based, but not controlled motivations, were related to adherence. In the presence of distress, the influence of self-regulation and intentional lapses on adherence were increased, while temptation and unintentional lapses were decreased. Discussion: The findings point to the importance of considering intentional, volitional, automatic, and emotional processes in the understanding and prediction of GFD adherence. Behaviour change interventions and psychological support are now needed so that theoretical knowledge can be translated into evidence-based care, including a role for psychologists within the multi-disciplinary treatment team

    Accurate and robust genomic prediction of celiac disease using statistical learning.

    Get PDF
    Practical application of genomic-based risk stratification to clinical diagnosis is appealing yet performance varies widely depending on the disease and genomic risk score (GRS) method. Celiac disease (CD), a common immune-mediated illness, is strongly genetically determined and requires specific HLA haplotypes. HLA testing can exclude diagnosis but has low specificity, providing little information suitable for clinical risk stratification. Using six European cohorts, we provide a proof-of-concept that statistical learning approaches which simultaneously model all SNPs can generate robust and highly accurate predictive models of CD based on genome-wide SNP profiles. The high predictive capacity replicated both in cross-validation within each cohort (AUC of 0.87-0.89) and in independent replication across cohorts (AUC of 0.86-0.9), despite differences in ethnicity. The models explained 30-35% of disease variance and up to ∼43% of heritability. The GRS's utility was assessed in different clinically relevant settings. Comparable to HLA typing, the GRS can be used to identify individuals without CD with ≥99.6% negative predictive value however, unlike HLA typing, fine-scale stratification of individuals into categories of higher-risk for CD can identify those that would benefit from more invasive and costly definitive testing. The GRS is flexible and its performance can be adapted to the clinical situation by adjusting the threshold cut-off. Despite explaining a minority of disease heritability, our findings indicate a genomic risk score provides clinically relevant information to improve upon current diagnostic pathways for CD and support further studies evaluating the clinical utility of this approach in CD and other complex diseases

    Preparation and characterization of avenin-enriched oat protein by chill precipitation for feeding trials in celiac disease

    Get PDF
    The safety of oats for people with celiac disease remains unresolved. While oats have attractive nutritional properties that can improve the quality and palatability of the restrictive, low fiber gluten-free diet, rigorous feeding studies to address their safety in celiac disease are needed. Assessing the oat prolamin proteins (avenins) in isolation and controlling for gluten contamination and other oat components such as fiber that can cause non-specific effects and symptoms is crucial. Further, the avenin should contain all reported immunogenic T cell epitopes, and be deliverable at a dose that enables biological responses to be correlated with clinical effects. To date, isolation of a purified food-grade avenin in sufficient quantities for feeding studies has not been feasible. Here, we report a new gluten isolation technique that enabled 2 kg of avenin to be extracted from 400 kg of wheat-free oats under rigorous gluten-free and food grade conditions. The extract consisted of 85% protein of which 96% of the protein was avenin. The concentration of starch (1.8% dry weight), β-glucan (0.2% dry weight), and free sugars (1.8% dry weight) were all low in the final avenin preparation. Other sugars including oligosaccharides, small fructans, and other complex sugars were also low at 2.8% dry weight. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the proteins in these preparations showed they consisted only of oat proteins and were uncontaminated by gluten containing cereals including wheat, barley or rye. Proteomic analysis of the avenin enriched samples detected more avenin subtypes and fewer other proteins compared to samples obtained using other extraction procedures. The identified proteins represented five main groups, four containing known immune-stimulatory avenin peptides. All five groups were identified in the 50% (v/v) ethanol extract however the group harboring the epitope DQ2.5-ave-1b was less represented. The avenin-enriched protein fractions were quantitatively collected by reversed phase HPLC and analyzed by MALDI-TOF mass spectrometry. Three reverse phase HPLC peaks, representing ~40% of the protein content, were enriched in proteins containing DQ2.5-ave-1a epitope. The resultant high quality avenin will facilitate controlled and definitive feeding studies to establish the safety of oat consumption by people with celiac disease

    Consistency in Polyclonal T-cell Responses to Gluten between Children and Adults with Celiac Disease

    Get PDF
    BACKGROUND & AIMS: Developing antigen-specific approaches for diagnosis and treatment of celiac disease requires a detailed understanding of the specificity of T cells for gluten. The existing paradigm is that T-cell lines and clones from children differ from those of adults in the hierarchy and diversity of peptide recognition. We aimed to characterize the T-cell response to gluten in children vs adults with celiac disease. METHODS: Forty-one children with biopsy-proven celiac disease (median age, 9 years old; 17 male), who had been on strict gluten-free diets for at least 3 months, were given a 3-day challenge with wheat; blood samples were collected and gluten-specific T cells were measured. We analyzed responses of T cells from these children and from 4 adults with celiac disease to a peptide library and measured T-cell receptor bias. We isolated T-cell clones that recognized dominant peptides and assessed whether gluten peptide recognition was similar between T-cell clones from children and adults. RESULTS: We detected gluten-specific responses by T cells from 30 of the children with celiac disease (73%). T cells from the children recognized the same peptides that were immunogenic to adults with celiac disease; deamidation of peptides increased these responses. Age and time since diagnosis did not affect the magnitude of T-cell responses to dominant peptides. T-cell clones specific for dominant α- or ω-gliadin peptides from children with celiac disease had comparable levels of reactivity to wheat, rye, and barley peptides as T-cell clones from adults with celiac disease. The α-gliadin-specific T cells from children had biases in T-cell receptor usage similar to those in adults. CONCLUSIONS: T cells from children with celiac disease recognize similar gluten peptides as T cells from adults with celiac disease. The findings indicate that peptide-based diagnostics and therapeutics for adults may also be used for children. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved

    Circulating gluten-specific FOXP3<sup>+</sup>CD39<sup>+</sup> regulatory T cells have impaired suppressive function in patients with celiac disease

    Full text link
    Background Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. Objective We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3)+ Treg cells. Methods Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4+ T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4+ T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). Results Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4+ T cells were FOXP3+CD39+ Treg cells, which reside within the pool of memory CD4+CD25+CD127lowCD45RO+ Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3+CD39+ Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. Conclusion This study provides the first estimation of FOXP3+CD39+ Treg cell frequency within circulating gluten-specific CD4+ T cells after oral gluten challenge of patients with celiac disease. FOXP3+CD39+ Treg cells comprised a major proportion of all circulating gluten-specific CD4+ T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key contributor to disease pathogenesis

    Circulating gluten-specific FOXP3 + CD39 + regulatory T cells have impaired suppressive function in patients with celiac disease

    Get PDF
    Background Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. Objective We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3)+ Treg cells. Methods Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4+ T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4+ T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). Results Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4+ T cells were FOXP3+CD39+ Treg cells, which reside within the pool of memory CD4+CD25+CD127lowCD45RO+ Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3+CD39+ Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. Conclusion This study provides the first estimation of FOXP3+CD39+ Treg cell frequency within circulating gluten-specific CD4+ T cells after oral gluten challenge of patients with celiac disease. FOXP3+CD39+ Treg cells comprised a major proportion of all circulating gluten-specific CD4+ T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key contributor to disease pathogenesis

    Food knowledge and psychological state predict adherence to a gluten-free diet in a survey of 5310 Australians and New Zealanders with coeliac disease

    Get PDF
    © 2018 John Wiley & Sons Ltd. Background: A gluten-free diet treats coeliac disease, but its efficacy depends on strict adherence. A variety of patient factors may influence adherence but have not been well described at a population level. Aim: To comprehensively assess the patient factors that influence gluten-free diet adherence in patients with coeliac disease. Methods: Patients with coeliac disease completed an online survey comprising the validated Celiac Dietary Adherence Test in addition to data on demographics, details of diagnosis and management and assessment of diet knowledge, quality of life and psychological distress. Survey data were analysed for predictors of adherence and quality of life. Results: Of 7393 responses, 5310 completed the Celiac Dietary Adherence Test and 3230 (61%) were adherent to a gluten-free diet. Multivariate regression showed older age, being male, symptoms after gluten ingestion, better food knowledge and lower risk of psychological distress were independent predictors of adherence (each P = 0.008). Additionally, dietary adherence was associated with better quality of life (P &lt; 0.001; multiple regression). Respondents who considered themselves to have poor food knowledge were more likely to incorrectly identify gluten-free foods, but could still recognise gluten-containing foods, suggesting that poor knowledge may lead to over-restriction of diet. Conclusions: Poor knowledge of a gluten-free diet and psychological wellbeing were independent modifiable risk factors for inadequate adherence to a gluten-free diet in patients with coeliac disease. Involvement of both a dietitian and mental health care professional, in the presence of psychological distress, is likely to be necessary to improve adherence and health outcomes

    Monitoring of gluten-free diet compliance in celiac patients by assessment of gliadin 33-mer equivalent epitopes in feces123

    Get PDF
    Background: Certain immunotoxic peptides from gluten are resistant to gastrointestinal digestion and can interact with celiac-patient factors to trigger an immunologic response. A gluten-free diet (GFD) is the only effective treatment for celiac disease (CD), and its compliance should be monitored to avoid cumulative damage. However, practical methods to monitor diet compliance and to detect the origin of an outbreak of celiac clinical symptoms are not available

    The Risk of Contracting COVID-19 Is Not Increased in Patients With Celiac Disease

    Get PDF
    The World Health Organization declared coronavirus disease-2019 (COVID-19) a global pandemic in March 2020. Since then, there are more than 34 million cases of COVID-19 leading to more than 1 million deaths worldwide. Numerous studies suggest that celiac disease (CeD), a chronic immune-mediated gastrointestinal condition triggered by gluten, is associated with an increased risk of respiratory infections.1-3 However, how it relates to the risk of COVID-19 is unknown. To address this gap, we conducted a cross-sectional study to evaluate whether patients with self-reported CeD are at an increased risk of contracting COVID-19
    corecore