105 research outputs found

    Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model

    Get PDF
    <p>Abstract</p> <p>Background/Aims</p> <p>Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q<sub>10 </sub>contributes to intracellular ROS regulation. Coenzyme Q<sub>10 </sub>beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q<sub>10 </sub>complementing effect on tamoxifen receiving breast cancer patients.</p> <p>Methods</p> <p>In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC) on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2) activity in MCF-7 cell line.</p> <p>Results and Discussion</p> <p>Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner.</p> <p>Conclusions</p> <p>Collectively, the present study highlights the significance of Coenzyme Q<sub>10 </sub>effect on the cell invasion/metastasis effecter molecules.</p

    Oestrogen receptor α gene haplotype and postmenopausal breast cancer risk: a case control study

    Get PDF
    INTRODUCTION: Oestrogen receptor α, which mediates the effect of oestrogen in target tissues, is genetically polymorphic. Because breast cancer development is dependent on oestrogenic influence, we have investigated whether polymorphisms in the oestrogen receptor α gene (ESR1) are associated with breast cancer risk. METHODS: We genotyped breast cancer cases and age-matched population controls for one microsatellite marker and four single-nucleotide polymorphisms (SNPs) in ESR1. The numbers of genotyped cases and controls for each marker were as follows: TA(n), 1514 cases and 1514 controls; c.454-397C → T, 1557 cases and 1512 controls; c.454-351A → G, 1556 cases and 1512 controls; c.729C → T, 1562 cases and 1513 controls; c.975C → G, 1562 cases and 1513 controls. Using logistic regression models, we calculated odds ratios (ORs) and 95% confidence intervals (CIs). Haplotype effects were estimated in an exploratory analysis, using expectation-maximisation algorithms for case-control study data. RESULTS: There were no compelling associations between single polymorphic loci and breast cancer risk. In haplotype analyses, a common haplotype of the c.454-351A → G or c.454-397C → T and c.975C → G SNPs appeared to be associated with an increased risk for ductal breast cancer: one copy of the c.454-351A → G and c.975C → G haplotype entailed an OR of 1.19 (95% CI 1.06–1.33) and two copies with an OR of 1.42 (95% CI 1.15–1.77), compared with no copies, under a model of multiplicative penetrance. The association with the c.454-397C → T and c.975C → G haplotypes was similar. Our data indicated that these haplotypes were more influential in women with a high body mass index. Adjustment for multiple comparisons rendered the associations statistically non-significant. CONCLUSION: We found suggestions of an association between common haplotypes in ESR1 and the risk for ductal breast cancer that is stronger in heavy women

    Site-selective protein-modification chemistry for basic biology and drug development.

    Get PDF
    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.We thank FCT Portugal (FCT Investigator to G.J.L.B.), the EU (Marie-Curie CIG to G.J.L.B. and Marie-Curie IEF to O.B.) and the EPSRC for funding. G.J.L.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.239

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF

    Proteomics in India: the clinical aspect

    Full text link

    Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review

    Full text link

    Positive solution of extremal Pucci’s equations with singular and sublinear nonlinearity

    No full text
    In this paper, we establish the existence of a positive solution to {−M+λ,Λ(D2u)=μk(x)f(u)uα−ηh(x)uqu=0in Ωon ∂Ω, {−Mλ,Λ+(D2u)=μk(x)f(u)uα−ηh(x)uqin Ωu=0on ∂Ω, where ΩΩ is a smooth bounded domain in Rn, n≥1.Rn, n≥1. Under certain conditions on k,f and h,k,f and h, using viscosity sub- and super solution method with the aid of comparison principle, we establish the existence of a unique positive viscosity solution. This work extends and complements the earlier works on semilinear and singular elliptic equations with sublinear nonlinearity.by Jagmohan Tyagi and Ram Baran Verm
    corecore