3,119 research outputs found

    High field CdS detector for infrared radiation

    Get PDF
    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery

    High field CdS detector for infrared radiation

    Get PDF
    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet

    Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite

    Full text link
    Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3+ cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K) and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is present. Around room temperature, the characteristic relaxation times for the C4 rotation is found to be ps while for the C3 rotation ps. The -dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3+ and the associated dipole have important implications on understanding the low exciton binding energy and slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance

    Threshold exceedances and cumulative ozone exposure indices at tropical suburban site

    Get PDF
    This study provides the first analysis of threshold exceedances and cumulative ozone exposure indices from Pune, a tropical suburban site in India. We used the directives on ozone pollution in ambient air provided by the United Nations Economic Commission for Europe, and by the World Health Organization to assess the air quality from in situ measurements of surface ozone (during the years 2003-2006). We find that the exposure-plant response index (Accumulated exposure Over a Threshold of 40 ppb (AOT40)) and target values for protection of human health (8-h > 60 ppb) are regularly surpassed. This is a concern for agricultural and human health. Air-mass classification based on back-air trajectories shows that the excess of AOT40 values is quite plausibly due to long-range transport of background ozone and its precursors to the measurement site

    Flux melting in BSCCO: Incorporating both electromagnetic and Josephson couplings

    Full text link
    Multilevel Monte Carlo simulations of a BSCCO system are carried out including both Josephson as well as electromagnetic couplings for a range of anisotropies. A first order melting transition of the flux lattice is seen on increasing the temperature and/or the magnetic field. The phase diagram for BSCCO is obtained for different values of the anisotropy parameter γ\gamma. The best fit to the experimental results of D. Majer {\it et al.} [Phys. Rev. Lett. {\bf 75}, 1166 (1995)] is obtained for γ≈250\gamma\approx 250 provided one assumes a temperature dependence λ2(0)/λ2(T)=1−t\lambda^2(0)/\lambda^2(T)=1-t of the penetration depth with t=T/Tct=T/T_c. Assuming a dependence λ2(0)/λ2(T)=1−t2\lambda^2(0)/\lambda^2(T)=1-t^2 the best fit is obtained for γ≈450 \gamma\approx 450. For finite anisotropy the data is shown to collapse on a straight line when plotted in dimensionless units which shows that the melting transition can be satisfied with a single Lindemann parameter whose value is about 0.3. A different scaling applies to the γ=∞\gamma=\infty case. The energy jump is measured across the transition and for large values of γ\gamma it is found to increase with increasing anisotropy and to decrease with increasing magnetic field. For infinite anisotropy we see a 2D behavior of flux droplets with a transition taking place at a temperature independent of the magnetic field. We also show that for smaller values of anisotropy it is reasonable to replace the electromagnetic coupling with an in-plane interaction represented by a Bessel function of the second kind (K0K_0), thus justifying our claim in a previous paper.Comment: 12 figures, revtex
    • …
    corecore