131 research outputs found

    Evaluation and application of the Baldwin-Lomax turbulence model in two-dimensional, unsteady, compressible boundary layers with and without separation in engine inlets

    Get PDF
    There is a practical need to model high speed flows that exist in jet engine inlets. The boundary layers that form in these inlets may be turbulent or laminar and either separated or attached. Also, unsteady supersonic inlets may be subject to frequent changes in operating conditions. Some changes in the operating conditions of the inlets may include varying the inlet geometry, bleeds and bypasses, and rotating or translating the centerbody. In addition, the inlet may be either started or unstarted. Therefore, a CFD code, used to model these inlets, may have to run for several different cases. Also, since the flow conditions through an unsteady inlet may be continually fluctuating, the CFD code which models these flows may have to be run over many time steps. Therefore, it would be beneficial that the code run quickly. Many turbulence models, however, are cumbersome to implement and require a lot of computer time to run, since they add to the number of differential equations to be solved to model a flow. The Baldwin-Lomax turbulence model is a popular model. It is an algebraic, eddy viscosity model. The Baldwin-Lomax model is used in many CFD codes because it is quick and easy to implement. In this paper, we will discuss implementing the Baldwin-Lomax turbulence model for both steady and unsteady compressible flows. In addition, these flows may be either separated or attached. In order to apply this turbulence model to flows which may be subjected to these conditions, certain modifications should be made to the original Baldwin-Lomax model. We will discuss these modifications and determine whether the Baldwin-Lomax model is a viable turbulence model that produces reasonably accurate results for high speed flows that can be found in engine inlets

    Running Past the Trees: Facing Childhood and Adolescence in Iowa\u27s Cedar Valley

    Get PDF
    This anthology is the result of a service-learning project supported by The Facing Project. Students enrolled in Two-Dimensional Concepts, a foundations art course at the University of Northern Iowa, and K-12 authors at the Waterloo Writing Project collaborated over the course of a semester through shared stories, conversations, and illustrations. The authors provided stories of their experiences and memories growing up in the Cedar Valley and were partnered with first year UNI art students who took inspiration from the authors\u27 writings to create accompanying illustrations.https://scholarworks.uni.edu/sli_trees/1000/thumbnail.jp

    Inhibited Spontaneous Emission in Solid-State Physics and Electronics

    Get PDF
    Abstract: In this report, we present the design principles to achieve a highly sensitive optical stress sensor. The structure we use is a double-layered (DL) photonic molecule with optical bonding and anti-bonding states based on whispering-gallery mode in photonic crystal microcavity. By applying finite-difference time-domain and finite-element methods, we simulate the change of optical properties (including wavelength and quality (Q) factor) of bonding mode caused by the DL structural variation due to the applied stress in two DL geometries. In the end, we summarize an optical stress sensor design with high Q factor, large structural response due to the applied stress, and large optical spectrum change due to the DL structural variation. The minimum detectable stress variation is estimated to be as small as 0.95 nN

    Table of Contents

    No full text

    Cover

    No full text
    corecore