45 research outputs found

    Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest

    Get PDF
    Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells

    SGNP: An Essential Stress Granule/Nucleolar Protein Potentially Involved in 5.8s rRNA Processing/Transport

    Get PDF
    Background: Stress Granules (SG) are sites of accumulation of stalled initiation complexes that are induced following a variety of cellular insults. In a genetic screen for factors involved in protecting human myoblasts from acute oxidative stress, we identified a gene encoding a protein we designate SGNP (Stress Granule and Nucleolar Protein). Methodology/Principal Findings: A gene-trap insertional mutagenesis screen produced one insertion that conferred resistance to sodium arsenite. RT-PCR/39 RACE was used to identify the endogenous gene expressed as a GFP-fusion transcript. SGNP is localized in both the cytoplasm and nucleolus and defines a non-nucleolar compartment containing 5.8S rRNA, a component of the 60S ribosomal subunit. Under oxidative stress, SGNP nucleolar localization decreases and it rapidly co-localizes with stress granules. The decrease in nucleolar SGNP following oxidative stress was accompanied by a large increase in nucleolar 5.8S rRNA. Knockdown of SGNP with shRNA increased global mRNA translation but induced growth arrest and cell death. Conclusions: These results suggest that SGNP is an essential gene that may be involved in ribosomal biogenesis and translational control in response to oxidative stress

    Exploitation of Herpesvirus Immune Evasion Strategies to Modify the Immunogenicity of Human Mesenchymal Stem Cell Transplants

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected. METHODOLOGY/PRINCIPAL FINDINGS: We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients' natural killer (NK) cells were depleted prior to cell transplantation. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable

    Surveillance des rayonnements sur le site du CERN

    No full text
    corecore