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SUMMARY

Oncogene-induced senescence (OIS) is a tumor
suppressionmechanism that blocks cell proliferation
in response to oncogenic signaling. OIS is frequently
accompanied bymultinucleation; however, the origin
of this is unknown. Here, we show that multinucleate
OIS cells originate mostly from failed mitosis. Prior
to senescence, mutant H-RasV12 activation in pri-
mary human fibroblasts compromised mitosis,
concordant with abnormal expression of mitotic
genes functionally linked to the observed mitotic
spindle and chromatin defects. Simultaneously,
H-RasV12 activation enhanced survival of cells with
damaged mitoses, culminating in extended mitotic
arrest and aberrant exit from mitosis via mitotic slip-
page. ERK-dependent transcriptional upregulation
of Mcl1 was, at least in part, responsible for
enhanced survival and slippage of cells with mitotic
defects. Importantly, mitotic slippage and oncogene
signaling cooperatively induced senescence and key
senescence effectors p21 and p16. In summary, acti-
vated Ras coordinately triggers mitotic disruption
and enhanced cell survival to promote formation of
multinucleate senescent cells.
INTRODUCTION

Cellular senescence is an important tumor suppressor mecha-

nism and involves a stable proliferation arrest associated with

an altered pro-inflammatory secretory pathway (Salama et al.,

2014). In response to acquisition of an activated oncogene, pri-

mary human cells enter a proliferation-arrested senescent state
Cell Re
called oncogene-induced senescence (OIS) (Braig et al., 2005;

Chen et al., 2005; Collado et al., 2005; Michaloglou et al.,

2005). Importantly, senescent cells, both in vitro and in vivo,

frequently contain multiple nuclei in a single cell body (Salama

et al., 2014). Indeed, appearance of multinucleated cells

(MNCs) is a key feature of senescence (Vergel et al., 2010).

Pathways induced downstream of activated oncogenes

include DNA replication stress and consequent DNA damage

signaling. These effectors ultimately converge on the p16/pRB

and p53/p21 tumor suppressor pathways (Salama et al., 2014).

Senescence-associated proliferation arrest is generally thought

to occur largely through a blockade to progression through G1

phase or early S phase (Campisi and d’Adda di Fagagna,

2007). Senescent cells can also be arrested in G2 (Mao et al.,

2012), and more recent publications have documented the

contribution of the premature activation of mitosis-specific

E3-ligase, APC/C, to the onset of senescence (Johmura et al.,

2014; Krenning et al., 2014). However, none of these mecha-

nisms adequately explain the origin of multinucleate OIS cells.

Senescent cells within benign and/or early-stage neoplasia are

at some risk of progression to malignancy if the senescence bar-

rier is breached (Braig et al., 2005;Chenet al., 2005;Colladoet al.,

2005;Michaloglou et al., 2005). In this regard, human benignmel-

anocytic nevi, neoplastic lesions of the skin composed largely of

OIS melanocytes harboring activatedNRAS or BRAF oncogenes

(Gray-Schopfer et al., 2006; Michaloglou et al., 2005), frequently

contain multinucleate melanocytes (Berlingeri-Ramos et al.,

2010; Leopold and Richards, 1967; Patino et al., 2012; Sav-

chenko, 1988).Multinucleate senescentmelanocytesmay harbor

genome instability, a risk factor for malignancy (Fox and Duronio,

2013), and these cells have been proposed to give rise to highly

proliferative, tumor-initiating stem-like cells (Leikam et al., 2015).

Given that approximately 25%ofmelanomas are thought to arise

in association with a pre-existing nevus (Smolle et al., 1999; Stolz

et al., 1989) it is important to understand the origin of multinu-

cleate, potentially pre-malignant, OIS cells.
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Figure 1. Multinucleated OIS Cells Originate from Aberrant Mitosis

(A) MNCs in human nevi. Dermal nevus-containing section of human skin stained with DAPI (panels 1 and 2) or for melan A (Mel A; panels 3 and 4). Panel 2 is a

magnified insert with multinucleated nevus cells (arrows). Panel 4 shows a magnification of melan-A-positive multinucleated nevus cells (top) and a section of

overlaying epidermis with mononucleated melanocytes (bottom). Scale bars, 500 mm for panels 1 and 3, 50 mm for panel 2, and 100 mm for panel 4. 17% of nevus

cells (out of 334) and 0% epidermis melanocytes (out of 365) are multinucleated in this specimen.

(legend continued on next page)
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Here, we show that activated RAS triggers two processes in

pre-senescent primary cells, mitotic stress and upregulation of

the anti-apoptotic protein Mcl1. These events together lead to

extended mitotic arrest, ultimately followed by slippage out of

mitosis to generate multinucleate proliferation-arrested senes-

cent cells. We also present evidence that this process potenti-

ates OIS, likely contributing to frequent multinucleation OIS cells

observed in vivo.

RESULTS

OIS Is Accompanied by Multinucleation
To confirm previous reports of multinucleate senescent melano-

cytes in benign human nevi, we stained nevi with DAPI to detect

DNA. This clearly revealed melan-A-positive nevus cells with

multiple nuclei, while an overlaying epidermis contained only

mononucleate melanocytes (Figure 1A). To investigate the

origin of multinucleation in OIS, we generated primary human fi-

broblasts (IMR90) expressing tamoxifen-activatable oncogenic

H-RasV12 fused to the estrogen receptor (ER) ligand-binding

domain (Reuter and Khavari, 2006) (Figure S1A), hereinafter

referred to as ERRAS cells. In this model, H-Ras signaling is

readily induced with tamoxifen (hereinafter referred to as acti-

vated Ras or induced ERRAS cells), while uninduced cells serve

as a control. As reported previously (Barradas et al., 2009; Lin

et al., 1998; Reuter and Khavari, 2006; Young et al., 2009), acti-

vation of oncogenic H-RasV12 induced downstream MEK

signaling (Figure S1A) and, after a transient proliferation burst,

led to a gradual decrease in DNA synthesis (Figure S1B). Within

2 weeks, cell growth ceased, and cells displayed characteristic

markers of senescence, such as senescence-activated b-galac-

tosidase (SA-b-gal) and senescence-associated heterochro-

matic foci (SAHF) (Figures S1C and S1D) as previously described

(Dimri et al., 1995; Narita et al., 2003). This was accompanied by

statistically significant 2.5- and 6.2-fold increases in proportion

of MNCs with two and more than two nuclei, respectively (Fig-

ures 1B, 1C, and S1E). Thus, this in vitro system recapitulates

the multinucleation phenotype observed in OIS in vivo.

Multinucleate OIS Cells Arise from Failed Mitoses
To delineate the process of multinucleation in OIS, we constitu-

tively expressed a fluorescent-tagged nuclear envelope protein,

GFP-Lamin A, in ERRAS cells. As expected, GFP fluorescence

localized to the nucleus and outlined the nuclear envelope (Fig-

ure S1F), similar to endogenous Lamin A, with some nuclear

foci as previously described (Hübner et al., 2006). Importantly,

there was no difference in nuclear morphology between cells

expressing GFP and GFP-Lamin A (Figure S1G). Fluorescent
(B) Multinucleated senescent 12-day-induced ERRAS cell, stained for microtubu

(C) 15-day ERRAS induction (Ras) increases the percentage of MNC with two nuc

three independently derived ERRAS cell populations. *p = 0.021; **p = 0.005 (pa

(D) Origin of multinucleation in GFP-Lamin A-expressing ERRAS cells observed

failure (light gray), cell fusion (medium gray), and interphase fragmentation (fragm

(E and F) In (E), cytokinesis failure leading to binucleation is shown. (F) Prolonged

(E) and (F), bright-field image (top) and corresponding GFP fluorescence (bottom)

undergoing multinucleation.

See also Figure S1 and Movies S1, S2, S3, S4, S5, S6, and S7.
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Lamin A facilitated continuous tracking of individual nuclei

over several days, and mitotic cells (i.e., cells in M-phase of

the cell cycle) were clearly identifiable by dispersal of the

GFP-Lamin A fluorescence on breakdown of the nuclear enve-

lope, rounded cell morphology, and compaction of chromatin

(Movie S1). Mitotic cells were easily distinguished from cells un-

dergoing apoptosis, in which nuclear GFP-Lamin A persisted

until cessation of all cellular blebbing (Figure S1H; Movie S2).

Long-term (3–4 days) time-lapse imaging of ERRAS cells ex-

pressing GFP-Lamin A revealed that, upon Ras activation, the

majority of MNCs originate from failed mitosis, although a small

number of cell fusions and fragmentation of lobulated inter-

phase nuclei were also detected (Figures 1D and S1I; Movies

S3 and S4). We observed two types of multinucleation events

linked to mitosis. One was a binucleation upon cytokinesis fail-

ure after a mitosis of a normal duration (Figure 1E; Movie S5). It

was also observed at comparable frequency in control cells

(Figure S1I) and so was not specific to OIS. A second type,

seen only in induced ERRAS cells (Figure S1I), followed a pro-

longed mitotic arrest and produced highly multinucleated cells

(Figure 1F; Movie S6). It was accompanied by vigorous cell

movement and was morphologically recognized as mitotic slip-

page (Brito and Rieder, 2006), an exit from mitosis into G1

without cell division (Rieder and Maiato, 2004). While mitotic po-

tential of the entire population declined with the duration of Ras

activation (Figure S1J), the percentage of mitoses that pro-

duced MNCs via slippage greatly increased (Figure S1K).

MNCs often survived for at least several days (Figures 6B and

S1E; Movie S7), likely contributing to multinucleation of senes-

cent cells. We conclude that, during progression toward OIS,

viable MNCs arise predominantly from failed mitoses.

H-RasV12 Activation in Primary Cells Causes Mitotic
Defects and Disruption of the Mitotic Gene Expression
Program
Consistent with observed mitotic failure in induced ERRAS cells,

we found a significant increase in spindle defects (Figures 2A

and 2B) and abnormal chromatin morphology (Figures 2B–2E)

in prometaphase andmetaphase cells 3–5 days after Ras activa-

tion. Specifically, mitotic spindles were either misshapen or had

low microtubule content (Figure 2A; data not shown), and prom-

etaphase and metaphase chromatin appeared de-compacted

(Figures 2C–2E; compare the diameters of individual chromo-

somes indicated in Figures 2C and 2D). Furthermore, the propor-

tion of anaphases with either lagging chromosomes or anaphase

bridges (Figure 2F) was significantly higher in cells after Ras acti-

vation (Figure 2G). Thus, H-RasV12 activation triggers mitotic

abnormalities in primary human fibroblasts.
les (left, red on overlay) and DAPI (middle, blue on overlay). Scale bars, 30 mm.

lei, more than two nuclei, and lobular nuclei. Data indicate means ± SEM from

ired Student’s t test). Cntr, control.

throughout 12 days of Ras induction and classified as originating from mitotic

, dark gray). n = 23 multinucleation events (see also Figure S1I).

mitotic arrest followed by slippage, generating a highly multinucleated cell. For

are shown at selected times (in hours:minutes, or hh:mm). Arrows indicate cells
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Figure 2. Mitotic Abnormalities in Pre-senescent Cells with Activated H-RasV12

(A) Mitotic spindles in control (top, Cntr) and induced (bottom, Ras) ERRAS cells, stained for microtubules (left panels, red in overlay) or DAPI (blue in overlay).

Scale bars, 20 mm.

(legend continued on next page)
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To identify potential cause(s) of mitotic defects during the

establishment of OIS, we performed RNA sequencing (RNA-

seq) gene expression profiling of cells captured in mitosis

4 days after Ras activation (Figure 3A). Our isolation procedure

yielded >90% mitotic cells from both induced and control

ERRAS cells. RNA-seq revealed that Ras induction significantly

altered the abundance of approximately 2,000 gene transcripts

in mitotic cells (Figure 3B). Principal-component analysis (PCA)

showed that replicates were highly consistent (Figure 3C).

Consistent with Ras-induced defects in mitosis, we found that,

out of 371 genes included in mitosis-related Gene Ontology

(GO) terms, 74 were significantly (5% false discovery rate

[FDR]) altered in mitoses with activated Ras (Figure 3D; Table

S2). This constituted a statistically significant (empirical p value <

0.0001) 2.17-fold enrichment of alterations in this gene set over

randomly expected changes. Furthermore, out of 328 transcripts

that were highly up- or downregulated in normal mitosis

compared to the unsynchronized control ERRAS cell popula-

tion [that are potentially relevant to mitotic processes (Cho

et al., 2001)], 64 (approximately 20%) were significantly (5%

FDR) altered by H-RasV12 in mitotic cells (2.11-fold increase

over random, empirical p value < 0.0001). More importantly,

mitotic spindle-related gene ontologies (namely, ‘‘mitotic spindle

organization,’’ ‘‘spindle localization,’’ and ‘‘establishment of

spindle localization’’) were the top three most altered GO terms

(Figures 3E and 3F; Table S2), consistent with the diverse spindle

defects in induced ERRAS cells (Figures 2A and 2B). Changes

in the spindle-related gene set were, significantly (empirical

p < 0.0001), 3.18-fold enriched over randomly expected. In line

with the observed chromatin defect in these cells (Figures 2C–

2E), the expression of chromatin regulators was also significantly

(5% FDR) changed (Figure 3G; Table S2) (1.26-fold enrichment,

empirical p = 0.0318). Underscoring the specificity of these

changes, the spindle checkpoint GO term was not significantly

altered in Ras-induced mitotic cells (empirical p = 0.75), consis-

tent with efficient mitotic arrest in these cells (see Figures 4B and

4C). Thus, H-RasV12 activation dysregulates expression of a

specific subset of mitotic genes linked to the observed mitotic

abnormalities in pre-senescent cells.

Activated H-RasV12 Suppresses Death and Promotes
Slippage out of Aberrant Mitosis to Generate MNCs
To examine the fate of defective mitoses in primary cells with

activated Ras, we induced widespread mitotic defects with an

Eg5 inhibitor, Dimethylenastron (DME), which prevents centro-

some separation and formation of a bipolar spindle. In many
(B) Quantification of chromatin and spindle defects (exemplified in A and D) in

induced (Ras) ERRAS cells. Data indicate means ± SD and p values from three r

(C and D) Normal mitotic chromatin (C) or Ras-induced chromatin defect (D) in mi

images of control (Cntr) (C) or 3-day-induced ERRAS (D) cells stained for microtu

bars, 2 mm. Yellow frames show the visible width of chromosomes.

(E) Quantification of chromatin decompaction in high-resolution 3D confocal ima

and metaphases (meta) in control (Cntr) or 3-day-induced (Ras) ERRAS cells were

chromatin (normal). Two independent experiments are shown. 15–26mitoses per

way ANOVA.

(F) Normal anaphase (left), aberrant anaphase with bridge (middle), or anaphase

(G) Quantification of anaphase defects, shown in (F), in 3- and 4-day-induced (Ra

three replicas, 155–532 anaphases each.

Cell Re
cell types, this engages the spindle checkpoint to arrest cells

in mitosis and eventually leads to cell death (Rath and Kozielski,

2012). DME induced efficient mitotic arrest with characteristic

monopolar spindles in both control and induced ERRAS cells

(Figure S2A), consistent with an intact spindle checkpoint (dis-

cussed earlier). However, cells with activated Ras were much

less sensitive to the cytotoxic effect of DME (Figure 4A). Ras

attenuated DME-induced caspase-3 activation among all cells

(Figure S2B) and specifically in phospho-H3-positive mitotic

cells (Figure S2C). Consistently, DME treatment conferred a

selective advantage on pre-senescent induced ERRAS cells

over parental IMR90 cells in mixed culture (Figure S2D). Live

cell imaging of individual mitoses revealed that activated Ras

extended mitotic arrest and delayed death in mitosis under

DME (Figures 4B and 4C). In addition, Ras activation dramati-

cally increased the proportion of cells that exited mitotic arrest

via mitotic slippage (Figure 4B). Consistent with nuclear frag-

mentation during slippage (Zhu et al., 2014), induced ERRAS

cells that survived DME treatment displayed widespread multi-

nucleation (Figure S2E). We conclude that activated H-RasV12

confers resistance to apoptosis triggered by aberrant mitosis.

Instead, such cells tend to slip out of mitosis to generate MNCs.

H-RasV12 Protects from Mitotic Death via ERK-
Dependent Increase in Mcl1
To find the cause of Ras-induced resistance tomitotic cell death,

we assessed the accompanied changes in regulators of mitotic

cell death and apoptosis in general. In ERRAS cells, one such

protein, Mcl1, showed a marked and sustained upregulation

upon Ras activation (Figures 4D, 4E, and S3A). A more modest

rise in XIAP level was also detected (Figure 4D), as previously

published (Liu et al., 2005). Expression of other apoptotic

regulators—namely Bid, Bax, Bak, Bcl-2, and Bcl-xL—was not

altered by activated Ras. Mcl1 also increased upon tamoxifen-

induced activation of ER-RasV12 in BJ fibroblasts (Figures

S3B and S3C) or upon retroviral transduction of IMR90 cells

with constitutively active H-RasV12 (Figure S3D). Importantly,

cells arrested in mitosis also displayed the Ras-mediated rise

in the level of Mcl1 (Figure 4F).

Elevated Mcl1 required continuous H-RasV12 signaling, since

tamoxifen withdrawal from induced ERRAS cells reduced Mcl1

protein level, concomitant with the decline in MEK1/2 phosphor-

ylation (Figure S3E). Importantly, Mcl1 was also reduced byMEK

inhibitor PD184352, which abolishes phosphorylation of extra-

cellular signal-regulated kinases 1 and 2 (ERK1/2) downstream

of activated Ras (Figures 4G and S3F). In comparison, inhibition
prometaphases (prometa) and metaphases (meta) of control (Cntr) or 5-day-

eplicates, 53–65 mitoses each.

totic cells from prophase to metaphase. Single optical sections of 3D confocal

bules (left panels, red in overlay) or DAPI (middle panels, blue in overlay). Scale

ges in two independent experiments. DAPI-stained prometaphases (prometa)

scored for decompacted (decomp), partially decompacted (mixed), or normal

condition per experiment. p values for distribution changes calculatedwith two-

with a lagging chromosome (right). Scale bars, 10 mm.

s) or control (Cntr) ERRAS cells. Data indicate means ± SD and p values from
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Figure 3. Activated H-RasV12 Dysregulates a Subset of Mitotic Genes in Pre-senescent Cells

(A) Experimental layout. 4-day-induced (+4OHT) or control (�4OHT) ERRAS cells were arrested in mitosis with DME (12–16 hr). Mitotic (detached) cells were

selectively collected by awashout, and >90%mitotic index (MI) was confirmed bymicroscopic scoring. Total RNAwas isolated and validated on the Bioanalyzer.

A cDNA library was constructed from poly(A) RNA and subjected to RNA-seq. The experiment was independently repeated three times. See Table S1 for

alignment statistics.

(legend continued on next page)
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of mammalian target of rapamycin (mTOR) (with Everolimus),

Nuclear Factor kB (NF-kB) (with parthenolide), or reactive oxy-

gen species (ROS) (with N-acetylcysteine) had little effect on

Mcl1 protein (Figure S3F). Furthermore, the high level of Mcl1

frequently overlapped with strong phospho-ERK1/2 staining

in an in vivo mouse model of OIS in the pancreas, specifically

in KRASG12D-triggered pancreatic intraepithelial neoplasias

(mPanINs) that contain senescent-like cells (Caldwell et al.,

2012; Collado and Serrano, 2010; Hingorani et al., 2003; Morton

et al., 2010) (Figure 4H).

Since activated ERK is known to stabilize Mcl1 protein (Ding

et al., 2008; Domina et al., 2004), we asked whether activated

Ras increases Mcl1 protein stability. Surprisingly, we found no

difference in the half-life of Mcl1 protein between induced and

control ERRAS cells treated with the protein synthesis inhibitor

cycloheximide (Figure 4I). On the other hand, the mRNA level

of MCL1 increased 3- to 4-fold upon Ras activation (Figures 4J

and S3G) and was efficiently reduced by MEK inhibitor

PD184352 (Figure 4K). Together, this suggests that oncogenic

H-RasV12 upregulates Mcl1 in primary cells via ERK-dependent

increase in mRNA abundance.

To test the requirement for a high level of Mcl1 in Ras-induced

resistance to mitotic death, we depleted Mcl1 from control

and induced ERRAS cells using small interfering RNA (siRNA)

(Figure 5A). Tracking individual mitoses in time-lapse images

revealed that depletion of Mcl1 reduced slippage out of DME-

induced mitotic arrest and increased mitotic cell death (Figures

5B and 5C). Furthermore, ectopic expression of Mcl1 (Figure 5D)

in control cells increased slippage and reduced death in DME-

treated cells (Figures 5E and 5F), recapitulating the effect of

Ras activation. Thus, in ERRAS cells, Ras-mediated upregula-

tion of Mcl1 is necessary and sufficient for enhanced survival

and increased slippage of damaged mitoses, contributing to

generation of MNCs by activated H-RasV12.

H-RasV12-Expressing Slipped Cells Are Senescent
To determine the fate of the Ras-induced slipped MNCs, we

incubated purified mitotically arrested cells with DME for an

additional 40 hr and collected and reseeded cells that slipped

(reattached) in this period, as shown in Figure 6A. Following

this protocol, approximately two thirds of the induced post-slip-

page ERRAS cells survived for at least 9 days (Figures 6B–6E).

They were multinucleated (Figures 6C and S2E); proliferation

arrested as measured by 5-ethynyl-20-deoxyuridine (EdU) incor-

poration (Figure 6C); SA-b-gal-, p21-, and p16 positive and cy-

clin B1 negative (Figures 6D–6E and S3H); and displayed large
(B) Total number of significantly upregulated genes (up) and downregulated gen

mitotic cells.

(C) PCA of Ras-induced (R1, R2, and R3) and control (C1, C2, and C3) mitoses bas

components 1 and 2, respectively.

(D) Heatmap of significantly differentially expressed genes (5% FDR) within the

Institute) between Ras-induced mitotic cells and control mitotic cells. Genes are

based column Z-score, intensity represents higher (red) to lower (blue) expressio

(E) DAVID GO analysis of differentially expressed genes between Ras-induced m

shown (FDR <5%).

(F) Heatmap of gene expression for genes within mitotic-spindle-related GO term

(G) Heatmap of gene expression for genes within the chromatin gene set derived

See also Tables S1 and S2.
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flat cell morphology (data not shown), all of which indicating

that they are senescent. siRNA-mediated knockdown of Mcl1,

abundant in these cells (Figures S3H and S3I), moderately pro-

moted cell death (Figure S3J). Thus, a large proportion of Ras-

expressing slipped cells becomesmultinucleate senescent cells.

Mitotic Slippage and Oncogene Activation Cooperate in
Establishing Senescence
Next, we asked if mitotic slippage can promote establishment

of OIS. To visualize any contribution of mitotic slippage to OIS-

associated cell-cycle arrest, we decreased expression of onco-

genic H-RasV12 in induced ERRAS cells by titrating down

tamoxifen (Figure 7A). Resulting low levels of H-RasV12were un-

able to induce cell-cycle arrest (Figure 7B, 12.5 nM and 6.25 nM

tamoxifen, no slippage). Likewise, slippage alone (protocol as in

Figure 6A, �4OHT), failed to induce stable proliferation arrest

characteristic of senescence, and instead caused only transient

cell-cycle arrest in cells that survived DME treatment (Figures

7B, S4A, and S4B). Enlarged nuclear volume and lobulated

nuclei or micronucleation in the proliferating EdU-positive cells

confirmed that these cells had likely slipped out of DME-induced

mitotic arrest (Figure S4C). In addition, these slipped cells dis-

played only weak SA-b-gal staining (Figure S4D, left panel) and

little p16 (Figure S4E, left panels), underscoring that they are

not senescent. However, combined low-level H-RasV12 expres-

sion and DME-enforced slippage effectively induced long-term

cell-cycle arrest (Figure 7B, 12.5 nM and 6.25 nM 4OHT + slip-

page; Figure S4A). Thus, mitotic slippage synergizes with low-

level oncogenic Ras in establishing senescence-associated

long-term cell-cycle arrest.

To gain insight into potential molecular drivers of such syn-

ergy, we examined the effect of DME-induced slippage and

low-level oncogenic H-RasV12 on key effectors of cellular

senescence. We found that 2 days after slippage (7 days of

Ras induction), p53 and its target p21, but not p16, were coop-

eratively upregulated by low-level H-RasV12 and mitotic slip-

page (Figure 7C; proportions of S-phase cells at this stage are

shown in Figure S4F). However, 9 days after slippage (Figure 7B,

14 days of Ras induction) expression of p16 was, instead, coop-

eratively upregulated by slippage and activated Ras (Figure 7D).

P16 is induced in mouse neoplasia, where it correlates with

OIS (Burd et al., 2013; Kuilman et al., 2010). Using p16-reporter

mice, heterozygous transgenic mice expressing a luciferase re-

porter gene under control of the p16 promoter (p16luc/wt) (Burd

et al., 2013), we asked whether oncogene-induced p16 is altered

by failed mitosis in vivo. Luminescence of p16 reporter was
es (down) genes (5% FDR) in Ras-induced mitotic cells compared to control

ed on expression of each known coding gene by FPKM. PC1 and PC2, principal

mitotic-related gene set (collated from several GSAE/MSigDB entries, Broad

represented in columns, and samples are represented in rows. In the FPKM-

n.

itotic cells and control mitotic cells. The top ten most enriched ontologies are

s, derived and represented as in (D).

and represented as in (D).
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Figure 5. Increased Mcl1 Is Responsible for

H-RasV12-Enhanced Mitotic Slippage

(A) Mcl1 depletion by siRNA in control (Cntr)

or induced (Ras) ERRAS cells. siC, non-targeting

siRNA; siM, Mcl1-targeting siRNA; -, no trans-

fection. Actin is a loading control.

(B) Time-lapse analysis of duration and outcome

of individual mitoses in control (Cntr) or 4-day-

induced (Ras) ERRAS cells transfected with either

Mcl1-targeting (siM) or non-targeting (siC) siRNA,

treated with DME for 3 days. 207–337 mitoses per

condition. Percentage of slippage is shown at top.

(C) Percentage of mitotic slippage quantified from

(B). Data indicate mean ± SEM from three biolog-

ical replicates, 63–115 mitoses each.

(D) Mcl1 level in ERRAS cells infected with retro-

virus expressing HA-Mcl1 or vector only. Actin is a

loading control.

(E) Time-lapse analysis of duration and outcome

of individual mitoses in DME-treated HA-Mcl1 or

vector-expressing uninduced ERRAS cells, 141–

165 mitoses per condition.

(F) Percentage of mitotic slippage quantified from

(E). Data indicate mean ± SEM from three repli-

cates, 43–61 mitoses each.
activated at the site of a 10-day-old wound (Figure S5A), consis-

tent with upregulation of p16 during wound healing (Burd et al.,

2013; Demaria et al., 2014; Jun and Lau, 2010). To induce senes-

cence associatedwith an activated Ras oncogene, we subjected

mice to a DMBA/TPA skin carcinogenesis protocol. This

treatment is associated with H-RasQ61L mutation, formation of

skin papillomas containing senescent cells, and, ultimately, pro-
Figure 4. Activated H-RasV12 Confers Resistance to Mitotic Death and Upregulates Mcl1

(A) H-RasV12 protects from cell death caused by DME. Kinetics of cell death in DME-treated 4-day-induc

measured by Sytox Green inclusion. The y axis shows numbers of dead cells recognized as fluorescent objec

Triplicate measurements are shown.

(B) Enhanced mitotic slippage in cells with activated Ras. Control (Cntr) or 4-day-induced (Ras) ERRAS cells w

mitotic arrest prior to cell death (blue dots) or prior to slippage (red dots) was quantified in randomly selected 7

is shown below. The experiment was repeated at least five times with similar outcome.

(C) Mean duration (±SEM) of DME-inducedmitotic arrest in all cells (all, left) or leading to cell death (death only

cells, quantified from four independent experiments. *p value = 0.025; **p value = 0.003 (paired Student’s t

(D and E)Mcl1 protein level is increased in 4 days induced ERRAS (Ras), compared to control cells (Cntr). Cell ly

apoptotic regulators and Lamin A/C or actin as loading controls.

(F) 4 days of induction increases Mcl1 in mitotically arrested ERRAS cells. Control (Cntr) or induced (Ras) ERR

indicated, collected by shake-off or left untreated (first two lanes), and immunoblotted for Mcl1 and Cyclin B

(G) Reduction in Mcl1 protein level in 7-day-induced ERRAS upon ERK inhibition by 4 hr of PD184352. Sim

Thr202/Tyr204 is shown. Actin is a loading control.

(H) Colocalization of high-level Mcl1 and phospho-ERK in mouse pre-malignant mPanIN. Sections of pancrea

for KRas (top) or heterozygous for KRasG12D (bottom), with pancreatic ducts (top, red arrows) or mPanINs (b

Tyr204 ERK1/2 (left) or Mcl1 (right).

(I) Mcl1 protein stability is not altered by Ras induction. Relative amount of Mcl1 protein quantified from Mcl

(Cntr) ERRAS cells at indicated time in cyclohexamide (CHX). Data indicate mean ± SD from triplicate sample

conditions are shown. (J) qPCR analysis of MCL1 mRNA level in control (Cntr) and 4-day-induced (Ras) ERR

mRNA level in control or 4-day-induced ERRAS cells measured by qPCR.

(J and K) Mean (±SD) relative abundance (with control set up as 1) of mRNA from three technical replicas, n

See also Figures S2 and S3.
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gression to skin carcinomas (Fujiki et al.,

1989; Quintanilla et al., 1986; Sun et al.,

2007). The DMBA-TPA protocol by itself

led to induction of the p16 promoter at
the site of treatment (Figures 7E and S5B). Mitotic defects

were induced by intraperitoneal (i.p.) injection of SB-743921,

an Eg5 inhibitor with the highest efficiency and the lowest toxicity

in vivo (Rath and Kozielski, 2012) that has undergone a phase 1

clinical trial in humans (Holen et al., 2011). On its own, SB-

743921 induced mitotic aberrations but had no significant effect

on p16-promoter-driven luciferase activity (Figures 7E and S5C).
ed (Ras, red) or control (Cntr, blue) ERRAS cells,

ts within four Incucyte images minus background.

ere imaged for 3 days under DME, and duration of

1 (Cntr) or 67 (Ras) mitoses. Percentage of slippage

, right) in control (Cntr) or 3- to 5-day-induced (Ras)

test).

sateswere blotted with panel of antibodies against

AS cells were treated with DME for 2.5 or 10 hr as

1. Lamin A/C is a loading control.

ultaneous reduction in ERK1/2 phosphorylation at

s from 4-month-old PDX1-Cremice, wild-type (WT)

ottom, black arrows) stained for phospho-Thr202/

1/actin immunoblots from induced (Ras) or control

s. The calculated half-lives of Mcl1 protein for both

AS cells. (K) Effect of 4 hr of PD184352 on MCL1

ormalized to GAPDH.
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Figure 6. Survival and Senescence of Cells with Activated H-RasV12 following Mitotic Slippage
(A) Experimental layout. Control (�4OHT) or 3-day-induced ERRAS cells (+4OHT) were arrested with DME for 9 hr (control cells were seeded in excess to account

for lower level of mitotic slippage). Mitoses were collected and re-plated under DME for a further 40 hr. After washing away the remainingmitoses and cell debris,

the slipped (attached) control and induced cells were re-seeded at the same cellular density (time corresponding to 5 days after induction). Time of siRNA

transfection for Figures S3I and S3J is indicated by an asterisk. Measurements were performed during period indicated by bracket.

(B) Cell death after slippage in induced ERRAS cells (Ras slipped), measured by incorporation of Sytox Green viability dye. Staurosporin treatment of control cells

plated at the same initial density, 100% (staur), was used to visualize the maximal level of cell death in this assay (100% cell death was confirmed by visual

examination). Untreated induced cells (Ras) as well as untreated control cells (Cntr) seeded at the same density are also shown. The data were acquired

simultaneously with data in Figure S3J, which uses the Ras slipped and 100% (staur) data again as controls. Triplicate measurements are shown.

(C) Slippage induces durable cell-cycle arrest in induced ERRAS cells. Percentage of replicating cells measured by EdU incorporation at indicated times after

slippage (mean ± SD from seven replicates). Percentages of multinucleate cells in the samples are given below (% MNC).

(D) SA-b-gal staining of 14-day-induced ERRAS cells 9 days after slippage (top), compared to untreated control ERRAS (bottom). Percentages of b-gal-positive

cells are given. d, days.

(E) p16 immunofluorescence in 14-day-induced ERRAS cells 9 days after slippage (top). p16 staining in control (middle row) and 14-day-induced (senescent,

bottom) ERRAS cells are shown as negative and positive controls, respectively. Scale bar, 200 mm. Overlay colors: DAPI, blue; p16, green.

See also Figure S3.
Remarkably, however, SB-743921 treatment together with

DMBA-TPA induced a further significant increase in p16

activation (Figures 7E and 7F). This is consistent with our

in vitro observation that mitotic disruption and an activated

oncogene cooperate to upregulate p16.

DISCUSSION

Here, we report that frequently observed multinucleate OIS

cells stem in large part from specific oncogene-induced mitotic
1492 Cell Reports 12, 1483–1496, September 1, 2015 ª2015 The Au
abnormalities, in conjunction with oncogene-induced upregula-

tion of Mcl1 that promotes survival and slippage out of aberrant

mitoses. Furthermore, we show that progression throughmitotic

slippage can enhance senescence induced by weak oncogenic

signaling.

Previously, multinucleated senescent cells were suggested to

be generated via endomitosis/cytokinesis failure (Leikam et al.,

2008; Takahashi et al., 2006), cell-cell fusion (Leikam et al.,

2008), and ‘‘amitosis’’ (fragmentation of polyploid nuclei in inter-

phase) (Walen, 2006). Combining long-term time-lapse imaging
thors
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Figure 7. Mitotic Slippage and Low-Level

Oncogene Signaling Cooperate to Upregu-

late p21 and p16 and Induce Senescence-

Associated Cell Cycle Arrest

(A) Titration of ER-H-RasV12 level in ERRAS cells

by differential 4OHT concentration. Lysates from

ERRAS cells induced for 7 days with indicated

4OHT concentrations (0–100 nM) were blotted with

anti-Ras antibody that recognizes both endoge-

nous Ras (asterisk) and ER-RasV12 fusion. Actin is

a loading control.

(B) Combination of mitotic slippage and low-level

(subthreshold for OIS onset) H-RasV12 expression

induces effective cell-cycle arrest in ERRAS cells.

The experiment was conducted as in Figure 6A but

using several concentrations of 4OHT. Percentage

of replicating cells measured by EdU incorporation

in control ERRAS cells (0, Cntr) or ERRAS cells

treated with indicated concentrations of 4OHT

are shown at 9 days after slippage (14 days of

H-RasV12 induction). Data indicate means ± SD

from seven replicate experiments. d, days.

(C and D) Immunoblots of the lysates from samples

shown in (B) collected at 2 (C) or 9 (D) days after

slippage, corresponding to 7 (C) or 14 (D) days

of Ras induction, to detect changes in protein

amounts of p53, p21, and p16. Actin is a loading

control.

(E) Activation of p16-promoter-driven luciferase

expression in p16Luc/wt transgenic mice, treated

with a combination of ectopic DMBA-TPA protocol

and Eg5 inhibitor SB-743921. Mice received

DMBA (week 0, not shown) followed by TPA during

weeks 1–3. Three i.p. injections of SB-743921

or vehicle were given during the first week of TPA

(shown as asterisks). Luciferase activity was

measured weekly using the IVIS in vivo imaging

system. Average increases in luciferase activity (as

compared to week 0) ± SEM in vehicle-treated

cohort (n = 8, blue) or in SB-743921-treated cohort (n = 9, red) are shown. Difference between cohorts is significant at week 2, with p < 0.05. Changes in luciferase

expression in two individual vehicle-treated (gray) and two individual SB-743921-treated (green) mice without DMBA-TPA application are shown as controls.

(F) Example of p16-promoter-driven luciferase expression activated by the DMBA-TPA protocol (third week) with (left) or without (right) SB-743921 injections in

p16Luc/wt mice, as measured by luminescence in the presence of D-licuferin substrate. The color key to radiance of luminescence is on the right. The mea-

surement regions (cycles) corresponding to the areas subjected to DMBA/TPA applications are shown.

See also Figures S4 and S5.
with fluorescent labeling of nuclei in cells undergoing OIS, we

achieved a superior resolution that allowed an unbiased tracking

of any detected multinucleated cells back to their origin. This un-

equivocally showed that multinucleation is predominantly due to

mitotic failure. We further describe a spontaneous mitotic arrest

and slippage in the course of OIS that generates senescent cells

with multiple nuclei, a process not found in control primary cells.

Remarkably, we found that H-RasV12 expression in primary

cells induces a range of mitotic defects that are well reflected in

accompanyingchanges in geneexpression, specifically inmitotic

spindle and chromatin regulatory genes.We also established that

activated Ras alters the fate of aberrant mitoses, from predomi-

nant cell death to frequent mitotic slippage. We determined that

this depends on ERK-mediated increase in the level of anti-

apoptotic protein Mcl1, in line with an established role of Mcl1

in mitosis (Harley et al., 2010; Topham and Taylor, 2013). Based

on the aforementioned findings, we suggest that multinucleation
Cell Re
in OIS results from oncogene-induced dysregulation of mitotic

genes combined with Mcl1-dependent resistance to mitotic

death, causing cells with excessivemitotic defects to exit mitosis

via slippage, ultimately forming senescent MNCs. Although such

multinucleation is a relatively rare event, genome aberrations

associated with multinucleation can be a source of genome

instability, which is, in turn, a contributor to malignancy (Fox and

Duronio, 2013). Indeed, a recent study showed thatmultinucleate

senescent melanocytes could give rise to tumor-initiating cells

(Leikam et al., 2015). This is important, given that approximately

25% of melanomas are thought to arise in association with a

pre-existing nevus (Smolle et al., 1999; Stolz et al., 1989)

Our data implicate aberrant mitosis in the establishment of

OIS. MNCs are likely to be an extreme manifestation of the

more widespread defects associated with mitotic aberrations

(‘‘mitotic stress’’) during transition to senescence (compare Fig-

ures 1C and 2B). Aberrant mitotic progression was shown to
ports 12, 1483–1496, September 1, 2015 ª2015 The Authors 1493



generate de novo DNA damage (Colin et al., 2015; Ganem and

Pellman, 2012; Hayashi and Karlseder, 2013). Considering that

DNA damage response is a major driver of OIS (Di Micco et al.,

2006), it is conceivable that damage associated with Ras-

inducedmitotic stress could also contribute to the establishment

of senescence, in the same way that Ras-induced DNA replica-

tion stress triggers senescence (Di Micco et al., 2006). Indeed,

we show that mitotic stress has the ability to potentiate pro-

senescence oncogenic signaling. Our data suggest that p21

and, later, p16 are cooperatively upregulated by aberrant mitotic

progression and sub-threshold H-RasV12, and, thus, it is

possible that mitotic stress and oncogenic signaling cooperate

to reach the critical level of senescence mediators.

In summary, our work has delineated a cellular process under-

lying multinucleation in OIS that involves impaired mitosis com-

bined with increased Mcl1-dependent survival and subsequent

slippage from aberrant mitosis, followed by a cell-cycle arrest.

We propose that oncogene-induced mitotic stress cooperates

acutely with other senescence effector pathways to induce

OIS. However, in the long term, such multinucleate senescent

cells may carry increased risk of malignant progression.

EXPERIMENTAL PROCEDURES

Cells

Primary human fibroblasts IMR90 and BJ cells were retrovirally transduced

with ER-H-RasV12-encoding pLNC-Ras:ER (Barradas et al., 2009) to generate

ERRAS cells. ER-H-RasV12 was activated by continuous treatment with

100 ng/ml (unless indicated otherwise) 4-hydroxytamoxifen (4OHT). Hemag-

glutinin epitope tag (HA) containing pLZRS-HA-Mcl1, pLZRS control vector,

GFP-fused Lamin A, or GFP alone was introduced to ERRAS cells or parental

IMR90 cells via retroviral constructs. See the Supplemental Experimental Pro-

cedures for details. Cells were arrested in mitosis with 1 mM Eg5 inhibitor III

(DME, Calbiochem/Merck, catalog number 324622) for indicated time and har-

vested by shake-off. For mitotic slippage, mitoses were further incubated with

DME for up to 3 days, and any unattached cells and debris were washed away

before attached (slipped) cells were harvested.

siRNA

Mcl1 depletion was performed with siGENOME SMARTpool Mcl1-targeting

siRNA, while non-targeting siRNA was used as a control (see details in the

Supplemental Experimental Procedures).

Cell Death/Apoptosis Assays

Apoptosis was detected by fluorescence of the NucView 488 caspase-3 sub-

strate (Biotium) and quantified by flow cytometry (see details in the Supple-

mental Experimental Procedures). When required, it was combined with the

identification of mitotic cells (by phospho-histone H3 staining). Alternatively,

cells plated at identical densities were incubated in the presence of Sytox

Green viability dye (Invitrogen #S7020), and kinetics of Sytox Green incorpora-

tion (reflecting cell death) was imaged, measured, and analyzed using the

IncuCyte FLR imaging system (Essen Bioscience). Each data point represents

the number of dead cells (automatically recognized as fluorescent objects)

within four image acquisition windows after subtracting the background

when necessary.

Measurement of DNA Synthesis

BrdU incorporation after a 5-hr BrdU pulse was measured as described in the

Supplemental Experimental Procedures. Alternatively, cells on 96-well plates

were pulsed with EdU for 3 hr, followed by EdU detection using the Click-IT

EdU imaging kit (Life Technologies). Plates were scanned with the Operetta

High Content Imaging System (PerkinElmer) and analyzed as described in

the Supplemental Experimental Procedures.
1494 Cell Reports 12, 1483–1496, September 1, 2015 ª2015 The Au
Immunofluorescence

Cells cultured on glass coverslips were fixed by the appropriate method,

immunostained as described in the Supplemental Experimental Procedures,

and counterstained with DAPI. Image acquisition, processing, and analysis

are detailed in the Supplemental Experimental Procedures.

SA-b-gal Staining

Cells on coverslips were fixed with PBS containing 2% formaldehyde and

0.2% glutaraldehyde for 5 min, washed in PBS, and stained overnight at

37�C in staining solution containing 150 mM NaCl, 2 mM MgCl2, 5 mM

K3Fe(CN)6, 5 mM K4Fe(CN)6, 40 mM Na2HPO4, and 1 mg/ml X-Gal (Sigma

Aldrich #16664).

Immunoblotting

Cellular lysateswere prepared and analyzed on SDS-PAGE as described in the

Supplemental Experimental Procedures. Protein stability was determined

from the time-course measurements of Mcl1 and actin levels in immunoblots

of cells treatedwith 10 mg/ml cycloheximide (Sigma) in triplicates, as described

in the Supplemental Experimental Procedures.

PCR and qPCR

Total RNA was extracted with the RNeasy Plus Mini Kit (QIAGEN), followed by

DNase I treatment. cDNA was produced using oligo-dT primers. Semi-qPCR

was performed with Mcl1 and APRT primers and visualized as detailed in

the Supplemental Experimental Procedures. Real-time PCR was performed

using separately designedMCL1L-specific primers (see Supplemental Exper-

imental Procedures) with the SYBR-Green PCRMasterMix (Life Technologies)

on the BioRad Chromo4 thermo cycler. Triplicate C(t) data for MCL1 and a

housekeeping gene (GAPDH) were analyzed using the REST program to calcu-

late changes in gene expression.

RNA-seq and Data Analysis

Total RNA isolated from mitotically arrested or unsynchronized cells was

used to generate the cDNA library. Samples were sequenced on an Illumina

NextSeq500. Paired-end reads were aligned to the human genome (hg19)

using the splicing-aware aligner Tophat2. Reference splice junctions were

provided by a reference transcriptome (Ensembl build 73). FPKM (fragments

per kilobase million) values were calculated using Cufflinks. Differential gene

expression was determined using the cuffdiff maximum likelihood estimate

function. Genes of significantly changing expression were defined as FDR-

corrected p value % 0.05. See details in the Supplemental Experimental Pro-

cedures. RNA-seq data are available at GSE70668.

Histopathology, immunohistochemistry/tissue immunofluorescence, and

details of animal studies are described in the Supplemental Experimental

Procedures.

All animal work was carried out according to UK Home Office regulations,

in line with the European Directive 2010 and approved by ethical review

(University of Glasgow).
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