132 research outputs found

    Allergic lung inflammation alters neither susceptibility to Streptococcus pneumoniae infection nor inducibility of innate resistance in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against <it>Streptococcus pneumoniae </it>(pneumococcal) pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria.</p> <p>Methods</p> <p>To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days.</p> <p>Results</p> <p>We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response was primarily neutrophilic. The presence of allergic inflammation did not significantly alter the neutrophilic response to the lysate, and did not affect the induced bacterial killing within the lungs.</p> <p>Conclusion</p> <p>These results suggest that allergic airway inflammation neither promotes nor inhibits progression of pneumococcal lung infection in mice, nor does it influence the successful induction of stimulated innate resistance to bacteria.</p

    Munc18b is an essential gene in mice whose expression is limiting for secretion by airway epithelial and mast cells

    Get PDF
    Airway mucin secretion and MC (mast cell) degranulation must be tightly controlled for homoeostasis of the lungs and immune system respectively. We found the exocytic protein Munc18b to be highly expressed in mouse airway epithelial cells and MCs, and localized to the apical pole of airway secretory cells. To address its functions, we created a mouse with a severely hypomorphic Munc18b allele such that protein expression in heterozygotes was reduced by∼50%. Homozygous mutant mice were not viable, but heterozygotes showed a ∼50% reduction in stimulated release of mucin from epithelial cells and granule contents from MCs. The defect in MCs affected only regulated secretion and not constitutive or transporter-mediated secretion. The severity of passive cutaneous anaphylaxiswas also reduced by ∼50%, showing that reduction of Munc18b expression results in an attenuation of physiological responses dependent on MC degranulation. The Munc18b promoter is controlled by INR (initiator), Sp1 (specificity protein 1), Ets, CRE (cAMP-response element), GRE (glucocorticoid-response element), GATA and E-box elements in airway epithelial cells; however, protein levels did not change during mucous metaplasia induced by allergic inflammation. Taken together, the results of the present study identifyMunc18b as an essential gene that is a limiting component of the exocytic machinery of epithelial cells and MCs

    Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses

    Get PDF
    <p>Abstract</p> <p>Since the beginning of the 20th century, humans have experienced four influenza pandemics, including the devastating 1918 'Spanish influenza'. Moreover, H5N1 highly pathogenic avian influenza (HPAI) viruses are currently spreading worldwide, although they are not yet efficiently transmitted among humans. While the threat of a global pandemic involving a highly pathogenic influenza virus strain looms large, our mechanisms to address such a catastrophe remain limited. Here, we show that pre-stimulation of Toll-like receptors (TLRs) 2 and 4 increased resistance against influenza viruses known to induce high pathogenicity in animal models. Our data emphasize the complexity of the host response against different influenza viruses, and suggest that TLR agonists might be utilized to protect against lethality associated with highly pathogenic influenza virus infection in humans.</p

    SNAP23 is selectively expressed in airway secretory cells and mediates baseline and stimulated mucin secretion

    Get PDF
    Airway mucin secretion is important pathophysiologically and as a model of polarized epithelial regulated exocytosis. We find the trafficking protein, SNAP23 (23-kDa paralogue of synaptosome-associated protein of 25 kDa), selectively expressed in secretory cells compared with ciliated and basal cells of airway epithelium by immunohistochemistry and FACS, suggesting that SNAP23 functions in regulated but not constitutive epithelial secretion. Heterozygous SNAP23 deletant mutant mice show spontaneous accumulation of intracellular mucin, indicating a defect in baseline secretion. However mucins are released from perfused tracheas of mutant and wild-type (WT) mice at the same rate, suggesting that increased intracellular stores balance reduced release efficiency to yield a fully compensated baseline steady state. In contrast, acute stimulated release of intracellular mucin from mutant mice is impaired whether measured by a static imaging assay 5 min after exposure to the secretagogue ATP or by kinetic analysis of mucins released from perfused tracheas during the first 10 min of ATP exposure. Together, these data indicate that increased intracellular stores cannot fully compensate for the defect in release efficiency during intense stimulation. The lungs of mutant mice develop normally and clear bacteria and instilled polystyrene beads comparable to WT mice, consistent with these functions depending on baseline secretion that is fully compensated

    Augmented Lung Inflammation Protects against Influenza A Pneumonia

    Get PDF
    Influenza pneumonia causes high mortality every year, and pandemic episodes kill millions of people. Influenza-related mortality has been variously ascribed to an ineffective host response that fails to limit viral replication, an excessive host inflammatory response that results in lung injury and impairment of gas exchange, or to bacterial superinfection. We sought to determine whether lung inflammation promoted or impaired host survival in influenza pneumonia.To distinguish among these possible causes of influenza-related death, we induced robust lung inflammation by exposing mice to an aerosolized bacterial lysate prior to challenge with live virus. The treatment induced expression of the inflammatory cytokines IL-6 and TNF in bronchoalveolar lavage fluid 8- and 40-fold greater, respectively, than that caused by lethal influenza infection. Yet, this augmented inflammation was associated with striking resistance to host mortality (0% vs 90% survival, p = 0.0001) and reduced viral titers (p = 0.004). Bacterial superinfection of virus infected lungs was not observed. When mice were repeatedly exposed to the bacterial lysate, as would be clinically desirable during an influenza epidemic, there was no tachyphylaxis of the induced viral resistance. When the bacterial lysate was administered after the viral challenge, there was still some mortality benefit, and when ribavirin was added to the aerosolized bacterial lysate, host survival was synergistically improved (0% vs 93.3% survival, p<0.0001).Together, these data indicate that innate immune resistance to influenza can be effectively stimulated, and suggest that ineffective rather than excessive inflammation is the major cause of mortality in influenza pneumonia

    Adenovirus-Vectored Drug-Vaccine Duo as a Rapid-Response Tool for Conferring Seamless Protection against Influenza

    Get PDF
    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs

    Chronic Exposure to Beta-Blockers Attenuates Inflammation and Mucin Content in a Murine Asthma Model

    Get PDF
    Single-dose administration of beta-adrenoceptor agonists produces bronchodilation and inhibits airway hyperresponsiveness (AHR), and is the standard treatment for the acute relief of asthma. However, chronic repetitive administration of beta-adrenoceptor agonists may increase AHR, airway inflammation, and risk of death. Based upon the paradigm shift that occurred with the use of beta-blockers in congestive heart failure, we previously determined that chronic administration of beta-blockers decreased AHR in a murine model of asthma. To elucidate the mechanisms for the beneficial effects of beta-blockers, we examined the effects of chronic administration of several beta-adrenoceptor ligands in a murine model of allergic asthma. Administration of beta-blockers resulted in a reduction in total cell counts, eosinophils, and the cytokines IL-13, IL-10, IL-5, and TGF-β1 in bronchoalveolar lavage, and attenuated epithelial mucin content and morphologic changes. The differences in mucin content also occurred if the beta-blockers were administered only during the ovalbumin challenge phase, but administration of beta-blockers for 7 days was not as effective as administration for 28 days. These results indicate that in a murine model of asthma, chronic administration of beta-blockers reduces inflammation and mucous metaplasia, cardinal features of asthma that may contribute to airflow obstruction and AHR. Similar to heart failure, our results provide a second disease model in which beta-blockers producing an acutely detrimental effect may provide a therapeutically beneficial effect with chronic administration
    • …
    corecore