7 research outputs found

    Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food

    Get PDF
    Modern agriculture provides the potential for sustainable feeding of the world's increasing population. Up to the present moment, genetically modified (GM) products have enabled increased yields and reduced pesticide usage. Nevertheless, GM products are controversial amongst policy makers, scientists and the consumers, regarding their possible environmental, ecological, and health risks. Scientific-and-political debates can even influence legislation and prospective risk assessment procedure. Currently, the scientifically-assessed direct hazardous impacts of GM food and feed on fauna and flora are conflicting; indeed, a review of literature available data provides some evidence of GM environmental and health risks. Although the consequences of gene flow and risks to biodiversity are debatable. Risks to the environment and ecosystems can exist, such as the evolution of weed herbicide resistance during GM cultivation. A matter of high importance is to provide precise knowledge and adequate current information to regulatory agencies, governments, policy makers, researchers, and commercial GMO-releasing companies to enable them to thoroughly investigate the possible risks

    Effects of Multivitamin, Multimineral and Phytonutrient Supplementation on Nutrient Status and Biomarkers of Heart Health Risk in a Russian Population: A Randomized, Double Blind, Placebo Controlled Study

    No full text
    The primary objective of this clinical study was to evaluate the effect of a dietary multivitamin, multimineral and phytonutrient (VMP) supplement on blood nutrient status and biomarkers of heart health risk in a Russian population. One hundred twenty healthy adults (40–70 years) were recruited for a 56-day (eight-week) randomized, double blind, placebo controlled study with parallel design. Subjects were divided into two groups and received either a VMP or a placebo (PLA) supplement. Blood nutrient levels of ÎČ-carotene, α-tocopherol, vitamin C, B6, B12, red blood cell (RBC) folate, Zinc and Selenium were measured at baseline and on Days 28 and 56, and quercetin was measured at baseline and on Day 56. Blood biomarkers of heart health, i.e. homocysteine (Hcy), high-sensitivity C-reactive protein (hs-CRP), oxidized LDL (ox-LDL), gamma-glutamyl transferase (GGT), uric acid and blood lipid profile, were measured at baseline and Day 56. Dietary VMP supplementation for 56 days significantly increased circulating levels of quercetin, vitamin C, RBC folate and partially prevented the decline in vitamin B6 and B12 status. Both serum Hcy and GGT were significantly reduced (−3.97 ± 10.09 ”mol/L; −1.68 ± 14.53 U/L, respectively) after VMP supplementation compared to baseline. Dietary VMP supplementation improved the nutrient status and reduced biomarkers of heart health risk in a Russian population

    Does Proteomic Mirror Reflect Clinical Characteristics of Obesity?

    No full text
    Obesity is a frightening chronic disease, which has tripled since 1975. It is not expected to slow down staying one of the leading cases of preventable death and resulting in an increased clinical and economic burden. Poor lifestyle choices and excessive intake of “cheap calories” are major contributors to obesity, triggering type 2 diabetes, cardiovascular diseases, and other comorbidities. Understanding the molecular mechanisms responsible for development of obesity is essential as it might result in the introducing of anti-obesity targets and early-stage obesity biomarkers, allowing the distinction between metabolic syndromes. The complex nature of this disease, coupled with the phenomenon of metabolically healthy obesity, inspired us to perform data-centric, hypothesis-generating pilot research, aimed to find correlations between parameters of classic clinical blood tests and proteomic profiles of 104 lean and obese subjects. As the result, we assembled patterns of proteins, which presence or absence allows predicting the weight of the patient fairly well. We believe that such proteomic patterns with high prediction power should facilitate the translation of potential candidates into biomarkers of clinical use for early-stage stratification of obesity therapy

    Lipoic Acid Exacerbates Oxidative Stress and Lipid Accumulation in the Liver of Wistar Rats Fed a Hypercaloric Choline-Deficient Diet

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is currently estimated as the most prevalent chronic liver disease in all age groups. An increasing body of evidence obtained in experimental and clinical data indicates that oxidative stress is the most important pathogenic factor in the development of NAFLD. The study aimed to investigate the impact of α-lipoic acid (LA), widely used as an antioxidant, on the effects of a hypercaloric choline-deficient diet. Male Wistar rats were divided into three groups: control diet (C); hypercaloric choline-deficient diet (HCCD), and hypercaloric choline-deficient diet with α-lipoic acid (HCCD+LA). Supplementation of HCCD with LA for eight weeks led to a decrease in visceral adipose tissue/body weight ratio, the activity of liver glutathione peroxidase and paraoxonase-1, plasma, and liver total antioxidant activity, as well as an increase in liver/body weight ratio, liver total lipid and triglyceride content, and liver transaminase activities compared to the HCCD group without LA. In conclusion, our study shows that α-lipoic acid detains obesity development but exacerbates the severity of diet-induced oxidative stress and lipid accumulation in the liver of male Wistar rats fed a hypercaloric choline-deficient diet

    Does Proteomic Mirror Reflect Clinical Characteristics of Obesity?

    No full text
    Obesity is a frightening chronic disease, which has tripled since 1975. It is not expected to slow down staying one of the leading cases of preventable death and resulting in an increased clinical and economic burden. Poor lifestyle choices and excessive intake of “cheap calories” are major contributors to obesity, triggering type 2 diabetes, cardiovascular diseases, and other comorbidities. Understanding the molecular mechanisms responsible for development of obesity is essential as it might result in the introducing of anti-obesity targets and early-stage obesity biomarkers, allowing the distinction between metabolic syndromes. The complex nature of this disease, coupled with the phenomenon of metabolically healthy obesity, inspired us to perform data-centric, hypothesis-generating pilot research, aimed to find correlations between parameters of classic clinical blood tests and proteomic profiles of 104 lean and obese subjects. As the result, we assembled patterns of proteins, which presence or absence allows predicting the weight of the patient fairly well. We believe that such proteomic patterns with high prediction power should facilitate the translation of potential candidates into biomarkers of clinical use for early-stage stratification of obesity therapy
    corecore