25 research outputs found

    Improved assay-dependent searching of nucleic acid sequence databases

    Get PDF
    Nucleic acid-based biochemical assays are crucial to modern biology. Key applications, such as detection of bacterial, viral and fungal pathogens, require detailed knowledge of assay sensitivity and specificity to obtain reliable results. Improved methods to predict assay performance are needed for exploiting the exponentially growing amount of DNA sequence data and for reducing the experimental effort required to develop robust detection assays. Toward this goal, we present an algorithm for the calculation of sequence similarity based on DNA thermodynamics. In our approach, search queries consist of one to three oligonucleotide sequences representing either a hybridization probe, a pair of Padlock probes or a pair of PCR primers with an optional TaqMan™ probe (i.e. in silico or ‘virtual’ PCR). Matches are reported if the query and target satisfy both the thermodynamics of the assay (binding at a specified hybridization temperature and/or change in free energy) and the relevant biological constraints (assay sequences binding to the correct target duplex strands in the required orientations). The sensitivity and specificity of our method is evaluated by comparing predicted to known sequence tagged sites in the human genome. Free energy is shown to be a more sensitive and specific match criterion than hybridization temperature

    TOPDOM: database of domains and motifs with conservative location in transmembrane proteins

    Get PDF
    Summary: The TOPDOM database is a collection of domains and sequence motifs located consistently on the same side of the membrane in α-helical transmembrane proteins. The database was created by scanning well-annotated transmembrane protein sequences in the UniProt database by specific domain or motif detecting algorithms. The identified domains or motifs were added to the database if they were uniformly annotated on the same side of the membrane of the various proteins in the UniProt database. The information about the location of the collected domains and motifs can be incorporated into constrained topology prediction algorithms, like HMMTOP, increasing the prediction accuracy

    TOPDB: topology data bank of transmembrane proteins

    Get PDF
    The Topology Data Bank of Transmembrane Proteins (TOPDB) is the most complete and comprehensive collection of transmembrane protein datasets containing experimentally derived topology information currently available. It contains information gathered from the literature and from public databases available on the internet for more than a thousand transmembrane proteins. TOPDB collects details of various experiments that were carried out to learn about the topology of particular transmembrane proteins. In addition to experimental data from the literature, an extensive collection of structural data was also compiled from PDB and from PDBTM. Because topology information is often incomplete, for each protein in the database the most probable topology that is consistent with the collected experimental constraints was also calculated using the HMMTOP transmembrane topology prediction algorithm. Each record in TOPDB also contains information on the given protein sequence, name, organism and cross references to various other databases. The web interface of TOPDB includes tools for searching, relational querying and data browsing as well as for visualization. TOPDB is designed to bridge the gap between the number of transmembrane proteins available in sequence databases and the publicly accessible topology information of experimentally or computationally studied transmembrane proteins. TOPDB is available at http://topdb.enzim.hu

    BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes

    No full text

    Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis

    No full text
    We present an approach that allows rapid determination of the topology of Escherichia coli inner-membrane proteins by a combination of topology prediction and limited fusion-protein analysis. We derive new topology models for 12 inner-membrane proteins: MarC, PstA, TatC, YaeL, YcbM, YddQ, YdgE, YedZ, YgjV, YiaB, YigG, and YnfA. We estimate that our approach should make it possible to arrive at highly reliable topology models for roughly 10% of the ≈800 inner-membrane proteins thought to exist in E. coli

    Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis

    No full text
    Using a genome-wide approach, we asked how many transporter genes contribute to symbiotic phosphate uptake and analyzed their evolutionary conservation. Considering the sequenced rice genome at hand, only the Oryza sativa phosphate transporter (OsPT) gene OsPT11 was specifically induced during the arbuscular mycorrhizal symbiosis. This induction was confined to the root system and was tightly correlated with the degree of root colonization by Glomus intraradices. OsPT11 activation was independent of the nutritional status of the plant and phosphate availability in the rhizosphere. Moreover, infection of roots with the fungal pathogens Rhizoctonia solani and Fusarium moniliforme did not activate OsPT11, corroborating the high signal specificity for OsPT11 activation in the arbuscular mycorrhizal symbiosis. OsPT11 expression complemented a defect in phosphate uptake in a yeast strain mutated in its high-affinity P(i) transporter (pho84), thereby confirming its function. Recently, a phosphate transporter gene in potato was shown to be induced during arbuscular mycorrhizal symbiosis. Assessment of the phylogenetic relationship of the rice and potato protein revealed that the rice is nonorthologous to the potato protein. Further, there are no structural commonalities in the promoter regions. Thus, although cytological and physiological features of the arbuscular mycorrhizal symbiosis seem to be conserved, the molecular components may differ significantly between distantly related plant species

    PRALINEtm: a strategy for improved multiple alignment of transmembrane proteins.

    No full text
    MOTIVATION: Membrane-bound proteins are a special class of proteins. The regions that insert into the cell-membrane have a profoundly different hydrophobicity pattern compared with soluble proteins. Multiple alignment techniques use scoring schemes tailored for sequences of soluble proteins and are therefore in principle not optimal to align membrane-bound proteins. RESULTS: Transmembrane (TM) regions in protein sequences can be reliably recognized using state-of-the-art sequence prediction techniques. Furthermore, membrane-specific scoring matrices are available. We have developed a new alignment method, called PRALINETM, which integrates these two features to enhance multiple sequence alignment. We tested our algorithm on the TM alignment benchmark set by Bahr et al. (2001), and showed that the quality of TM alignments can be significantly improved compared with the quality produced by a standard multiple alignment technique. The results clearly indicate that the incorporation of these new elements into current state-of-the-art alignment methods is crucial for optimizing the alignment of TM proteins. AVAILABILITY: A webserver is available at http://www.ibi.vu.nl/programs/pralinewww

    Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in Saccharomyces cerevisiae

    No full text
    Ost4p is a minimembrane protein containing only 36 amino acids and is a subunit of oligosaccharyltransferase (OT) in Saccharomyces cerevisiae. It was found previously when amino acid residues 18–25 of Ost4p were mutated to ionizable amino acids and defects were observed in the interaction between Ost4p and either Stt3p or Ost3p, two other components of OT. The transmembrane segment of Ost4p is likely to extend from residues 10–25. This is consistent with the finding that α-helicity is estimated to be 36% by CD analysis of synthetic Ost4p in liposomes. This value is in reasonable agreement with the assumption that amino acids 10–25 (16 of 36 or 44%) are transmembrane. Therefore, the mutation-sensitive region (residues 18–25) is localized to only one half of the putative transmembrane domain of Ost4p. To learn where this region of Ost4p is situated in relation to the faces of endoplasmic reticulum (ER) membrane, we determined the membrane topology of Ost4p using an in vivo method and established that it is an N(lumen)-C(cyto), type I membrane protein. These results indicate that the mutation-sensitive region of Ost4p is localized in the cytoplasmic leaflet of the ER membrane. In the current study, we also observed a loss of direct interaction between Ost3p and Stt3p in the presence of ost4 temperature-sensitive mutants, which indicates Ost4p, via interactions with amino acid residues in the cytosolic leaflet of the ER membrane, functions to bind these two proteins together in a subcomplex of OT
    corecore