20 research outputs found

    ELEMENTARY MECHANICS OF THE MITRAL VALVE

    Get PDF
    We illustrate a bare-bones mathematical model that is able to account for the elementary mechanics of the mitral valve when the leaflets of the valve close under the systolic pressure. The mechanical model exploits the aspect ratio of the valve leaflets that are represented as inextensible rods, subject to the blood pressure, with one fixed endpoint (on the endocardium) and an attached wire anchored to the papillary muscle. Force and torque balance equations are obtained exploiting the principle of virtual work, where the first contact point between rods is identified by the Weierstrass-Erdmann condition of variational nature. The chordae tendineae are modeled as a force applied to the free endpoint of the flaps. Different possible boundary conditions are investigated at the mitral annulus, and, by an asymptotic analysis, we demonstrate that in the pressure regime of interest generic boundary conditions generate a tensional boundary layer. Conversely, a specific choice of the boundary condition inhibits the generation of high tensional gradients in a small layer

    Equilibrium of Two Rods in Contact Under Pressure

    Get PDF
    We study the equilibrium of a mechanical system composed by two rods that bend under the action of a pressure difference; they have one fixed endpoint and are partially in contact. This system can be viewed as a bi-valve made by two smooth leaflets that lean on each other. We obtain the balance equations of the mechanical system exploiting the principle of virtual work and the contact point is identified by a jump condition. The problem can be simplified exploiting a first integral. In the case of quadratic energy, another first integral exists: its peculiarity is discussed and a further reduction of the equations is carried out. Numerical integration of the differential system shows how the shape of the beams and the position of the contact point depend on the applied pressure. For small pressure, an asymptotic expansion in a small parameter allows us to find an approximate solutions of polynomial form which is in surprisingly good agreement with the solution of the original system of equations, even beyond the expected range of validity. Finally, the asymptotics predicts a value of the pressure that separates the contact from the no-contact regime of the beams that compares very well with the one numerically evaluated

    Dehydration-induced mechanical instabilities in active elastic spherical shells

    Get PDF
    Active elastic instabilities are common phenomena in the natural world, where they have the character of sudden mechanical morphings. Frequently, the driving force of the instability mechanisms has a chemo-mechanical nature, which makes the instabilities very different from the standard elastic instabilities. In this paper, we describe and study the active elastic instability occurring in a swollen spherical closed shell, confining a water-filled cavity, during a dehydration process. We set up a few numerical experiments based on a stress-diffusion model to give an insight into the phenomenon. Then, we present a study that looks at the chemo-mechanical problem and, through a few simplifying assumptions, allows us to derive a semi-analytical model of the phenomenon. It takes into account both the stress state and the water concentration in the walls of the shell at the onset of the instability. Moreover, it considers the invariance of the cavity volume at the onset of instability, which is due to the impossibility of instantaneously changing the cavity volume filled with water. Eventually, it is shown that the semi-analytic model matches very well the outcomes of the numerical experiments far from the initial regime; the ranges of validity of the approximated analytical model are also discussed

    Elementary Mechanics of the Mitral Valve

    Get PDF

    A tipping point for agricultural expansion? Technological changes and capital accumulation in Argentina's rural sector

    No full text
    Drawing upon a case study located in central Argentina, we analyse in what ways technology is contributing to the accumulation of capital in a context where prevailing strategies resting on farm-scale extension are no longer effective. We identify two major technological phases that go along with changes in actors' strategies aiming at re-establishing expanded capital accumulation. These phases allow a better understanding of the mediating role of technology between capital accumulation and the appropriation of nature. In a context of increasing depletion of agro-ecological conditions, the call for a new wave of innovations can be seen as an attempt to restore that mediating role. As we suggest, this entails broader changes in multiple levels.Fil: Caceres, Daniel Mario. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Gras, Carla Sylvina. Universidad Nacional de San Martín. Instituto de Altos Estudios Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore