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ELEMENTARY MECHANICS OF THE MITRAL VALVE\ast 

D. AMBROSI\dagger , L. DEORSOLA\ddagger , S. TURZI\S , AND M. ZOPPELLO\dagger 

Abstract. We illustrate a bare-bones mathematical model that is able to account for the
elementary mechanics of the mitral valve when the leaflets of the valve close under the systolic
pressure. The mechanical model exploits the aspect ratio of the valve leaflets that are represented as
inextensible rods, subject to the blood pressure, with one fixed endpoint (on the endocardium) and
an attached wire anchored to the papillary muscle. Force and torque balance equations are obtained
exploiting the principle of virtual work, where the first contact point between rods is identified by the
Weierstrass--Erdmann condition of variational nature. The chordae tendineae are modeled as a force
applied to the free endpoint of the flaps. Different possible boundary conditions are investigated
at the mitral annulus, and, by an asymptotic analysis, we demonstrate that in the pressure regime
of interest generic boundary conditions generate a tensional boundary layer. Conversely, a specific
choice of the boundary condition inhibits the generation of high tensional gradients in a small layer.
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Introduction. The mitral valve is one of the four cardiac valves. It lies between
the left atrium and the left ventricle, and, different from the other three valves, it is
basically made of two flaps. During diastole, the valve opens, allowing blood to flow
from the atrium into the ventricle, while, during systole, the valve closes. The valve
opens and closes because of pressure difference: it opens when the pressure is greater
in the atrium than in the ventricle and closes vice versa [11].

The mitral valve has two leaflets: the anteromedial one and the posterolateral
one (see Figure 0.1). The outer boundary of the mitral valve is attached to a fibrous
ring known as the mitral annulus. The anteromedial leaflet covers approximately
one-third of the valve perimeter, while the remaining two-thirds are covered by the
posterolateral leaflet [7]. Valve tissue consists of a fibrous network, mainly collagen
and elastin, saturated with a fluid that is mostly water [19]. The valve leaflets are
prevented from prolapsing into the atrium by the action of the chordae tendineae.
These are inelastic tendons, much like parachute wires, attached, at one end, to the
inferior surface of the valve leaflets and, at the other end, to the papillary muscles,
which are part of the ventricular wall [13]. When the left ventricle contracts, the
pressure in the ventricle forces the valve to close, while these tendons stop the leaflets
in the correct position, coapting together, and prevent them from opening in the
wrong direction. Each chord has a different thickness: the thinnest ones are attached
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76 D. AMBROSI, L. DEORSOLA, S. TURZI, AND M. ZOPPELLO

Fig. 0.1. Plane projections of a pictorial representation of the mitral valve: top view (left) and
side views (right). The leaflets are drawn in blue; the embedded collagen fibers are green, while the
chordae tendineae are orange. Our model is set up in the (y, z) plane.

to the nonadhering part of the leaflet, whereas the thickest ones (that play the major
structural role) are attached near to the contact point.

In the embryo the mitral valve originates from the so-called endocardial cushions,
which is a thickening of the ventricular wall located immediately beneath the valve
annulus [9]. During the initial phase, within these ``cushions,"" a space is progres-
sively created, which separates a layer of cells from the cardiac wall. Later, some
``fenestrations"" develop in the inferior area of this layer of cells, and the endocardial
cushion space is thus put in communication with the ventricle. This allows the blood
to enter the space and, with its flow and pressure, to force the endocardial cell layer
to grow and to differentiate: the superior part of the layer generates the leaflets,
while the inferior part (the fenestrated one) creates the chordal system. This process
continues until the leaflets get in touch, and the valve assumes it final configuration.
Hydrodynamic forces are essential to this process [14].

The biomechanical engineering literature devoted to modeling the mechanics of
the mitral valve is huge [8] and is largely centered in developing three-dimensional
finite element models that can represent the time-dependent solid-fluid dynamics in-
teraction of the valve with the leaflets. The approach of this work is different: we
develop a reduced order model that is able to capture essential geometrical features
of the mitral valve that are apparent at ecocardiography and can support a surgeon
in designing his practice.

A relevant work inspired by the minimalistic approach is due to Arts et al. [1].
They study the mitral valve as a membrane, exploiting the Laplace law: without
detailing constitutive material laws and using differential geometry arguments, they
derive some analytical relations that exist between apparent geometrical characteris-
tics of the valve at systole (length of the nonattached flaps, volume of the chamber)
and the tension applied by the cordae tendineae.

In this work we consider a section of the heart along the base-to-apex direction
(see Figure 0.1(right)). During the morphogenesis of the valve, the flaps are math-
ematically represented as two noninteracting rods, with one endpoint attached to a
wire that constraints its kinematics. In the mature mitral valve, the leaflets are rep-
resented as rods of different lengths that at systole partially overlap each other. The
rods have an edge fixed in the plane (on the annulus); they are inextensible and sub-
ject to a pressure difference. We focus on the end of the systolic phase when the rod
bending produced by the pressure difference is balanced by the tension of the chordae
tendineae and by the interaction between the flaps in contact.

The mathematical derivation of the model is carried out for the more complex
system, i.e., the mature mitral valve with partially overlapping leaflets; the mathe-
matical model for the growing no-contact flap follows under some simplifications. We
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ELEMENTARY MECHANICS OF THE MITRAL VALVE 77

ideally split every rod in its attached and unattached portion, and the equilibrium
equations are obtained exploiting the principle of virtual work, written for rods under
the action of the pressure force per unit length. After the first variation of the en-
ergy functional, we obtain a system of three differential equations, supplemented by
suitable boundary conditions and two nonlinear algebraic equations that define the
curvilinear coordinates of the attachment point [16].

An asymptotic analysis points out the existence of boundary layers in the pressure
regime of interest, and we argue that a smart choice of the boundary conditions can
suppress the large tensional gradients that in general occur at a boundary. Numerical
integrations are performed for physiological values of the parameters and confirm in
an excellent way the approximate solutions obtained by asymptotic analysis. The
computed angles between the leaflets and the plane of the annulus are compared with
the ones measured by anatomical studies and ultrasound imaging.

1. The two rod system. In this section we obtain the equations for two rods
in contact that represent a bare-bones mechanical model of a mitral valve. The
derivation follows a variational approach [16]. The simpler system, i.e., the leaflets at
the embryonic stage, are represented by a single growing leaflet without contact, and
their mathematical model follows from the general one under simplifying assumptions.

1.1. Kinematics. We consider a mechanical system composed by two inexten-
sible rods that are in contact for a portion of their length. We therefore conveniently
introduce three curves in the plane [12]: the first two describe the position of nonat-
tached rods, subject to pressure difference; the latter accounts for the partially at-
tached configuration

(1.1) ri(si) : [0, \=si] \rightarrow \BbbR 2, i = 1, 2, 3,

where ri(si) = (x(si), y(si)) and in the mutual attachment point (the interface)

(1.2) r1(\=s1) = r2(\=s2) = r3(\=s3).

The two leaflets have a portion of the boundary on the annulus so that rods r1 and
r2 have a fixed endpoint

(1.3) r1(0) = r01, r2(0) = r02,

while the endpoint of the attached portions of the rods r3(0) is free (see Figure 1.1).
A unit tangent vector ti = (cos(\theta i), sin(\theta i)) is uniquely defined in every point of a

curve, where \theta i(si) is the angle between the tangent vector and the x-axis. Normal unit
vectors are defined as ni = (sin(\theta i), - cos(\theta i)) so that t\prime i =  - ni\theta 

\prime 
i. In the attachment

point the tangent vector is smooth:

(1.4) \theta 1(\=s1) = \theta 2(\=s2) = \theta 3(\=s3) + \pi .

We adopt arc-length parametrizations so that

(1.5) \=s1 + \=s3 = \ell 1, \=s2 + \=s3 = \ell 2,

where \ell 1 and \ell 2 are the rods' lengths. We notice that \ell 1 and \ell 2 are not the physical
length of the flaps, but the length measured from the points ri(0), i = 1, 2, to the
attachment point A; the length of the remaining portion of the valve in the ventricle
plays no mechanical role, and it is immaterial for the present model.
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r1(s̄1) = r2(s̄2) = r3(s̄3)
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p p

Fig. 1.1. The mitral valve is mechanically represented as a system of three rods: two of them
(r1(s1), r2(s2)) have a fixed endpoint; the latter one (r3(s3)) represents the contact region where
the flaps attatch to each other. The leaflets partially lay one over the other, starting from the
common point r1(\=s1) = r2(\=s2) = r(\=s3). The pressure difference p along the rods is represented with
orange arrows. A wire connects the endpoint of the lower rod with a fixed point, and its action is
dynamically represented by the force qe.

Moreover the following relations hold:

(1.6) n1(\=s1) = n2(\=s2) =  - n3(\=s3),

while

(1.7) t1(\=s1) = t2(\=s2) =  - t3(\=s3).

Remark 1. In real physiology, the first contact point between the leaflets of the
mitral valve during closure is dictated by time-dependent dynamics: the blood pres-
sure pushes the open flaps from the cardiac wall to the annulus plane, and their first
contact occurs in some specific point, as driven by the morphology, by the blood flow
and by its interaction with the deformable leaflet surfaces. As the surface of the
flaps are rough, they do not slide over each other after first contact, and such a point
remains fixed.

In our static structural model, we are not able to solve the dynamics that de-
termines the early contact point, which is therefore here a datum of the curvilinear
coordinates of the earliest contact point \ell 1 and \ell 2 (point A in Figure 1.1). The
curvilinear coordinate of the triple point (point B in Figure 1.1) is the length of the
contact region, and it is instead an unknown of the problem. In the final section we
shall consider different values of \ell 1 and \ell 2 corresponding to different positions of the
early attachment point.

The no-slip condition that characterizes the leaflet surfaces here yields a ``three
rod"" model, in contrast with the ``four rod"" model that is able to account for the
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ELEMENTARY MECHANICS OF THE MITRAL VALVE 79

perfect slip condition: the flaps can freely slide over each other, and the early contact
point is an immaterial information, as discussed, for instance, in [16].

1.2. Equilibrium equations. The inextensible rods store elastic energy only
because of bending:

wi(\theta 
\prime 
i, \=si) =

\int \=si

0

ki(s)

2
(\theta \prime i)

2dsi,(1.8)

where ki(s), i = 1, 2, 3, are bending moduli which possibly vary along each rod due to
their different thickness and k1 = k2 and k3 = 4k1+4k2, as obtained with the layered
structure of the physical leaflets.

We add the inextensibility constraint to the energy, and we get

(1.9) W (ri, \theta i,Ni, \=si) =

3\sum 
i=1

\biggl( \int \=si

0

ki(s)

2
(\theta \prime i)

2 dsi  - 
\int \=si

0

Ni \cdot (r\prime i  - ti)dsi

\biggr) 
,

where Ni(si) = (Nx
i (si), N

y
i (si)) is the (unknown) reaction force in the ith rod.

In our system a pressure difference p applies to the rods that separate the two
cardiac chambers, i.e., r1 and r2. One may notice that the force per unit length
pni is neither conservative nor dissipative, so we use the nonconservative version
of the principle of virtual works, \delta W = \delta L, where \delta L is the work exerted by the
nonconservative active forces.

Taking into account all the possible variations, including the contact point, the
principle reads

3\sum 
i=1

\biggl( \int \=si

0

ki\theta 
\prime 
i\delta \theta 

\prime 
i dsi  - 

\int \=si

0

\delta Ni \cdot (r\prime i  - ti) dsi  - 
\int \=si

0

Ni \cdot (\delta r\prime i + ni\delta \theta i)

\biggr) 
dsi

+

3\sum 
i=1

\bigl[ 
ki(\theta 

\prime 
i)

2  - Ni \cdot (r\prime i  - ti)
\bigr] 
\=si
\delta \=si

=

\int \=s1

0

pn1 \cdot \delta r1 ds1  - 
\int \=s2

0

pn2 \cdot \delta r2 ds2.

(1.10)

After integration by parts we get

3\sum 
i=1

\biggl( 
 - 
\int \=si

0

(ki\theta 
\prime 
i)

\prime \delta \theta i dsi + [ki\theta 
\prime 
i\delta \theta i]

\=si
0  - 

\int \=si

0

\delta Ni \cdot (r\prime i  - ti) dsi +

\int \=si

0

N\prime 
i \cdot \delta ri(\=si) dsi

 - [Ni \cdot \delta ri]\=si0  - 
\int \=si

0

Ni \cdot ni\delta \theta i dsi

\biggr) 
+

3\sum 
i=1

\biggl[ 
ki
2
(\theta \prime i)

2  - Ni \cdot r\prime i  - ti)

\biggr] 
\=si

\delta \=si

=

\int \=s1

0

pn1 \cdot \delta r1 ds1  - 
\int \=s2

0

pn2 \cdot \delta r2 ds2.

(1.11)

The Euler--Lagrange equations of the system (1.11) are obtained by the independent
variation of the fields of the energy functional (1.9): positions, angles, reactions, and
the curvilinear coordinates \=si. However, the variations \delta ri(\=si) and \delta \theta i(\=si), appearing
in (1.11) after integration by parts, contain contributions to the variations of \=si.
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80 D. AMBROSI, L. DEORSOLA, S. TURZI, AND M. ZOPPELLO

To decouple the increments we observe that the total variation of \theta i, say \delta \=\theta i, up to
first order is composed by two terms,

(1.12) \delta \=\theta i = (\theta i(\=si + \delta \=si) + \delta \theta i(\=si + \delta \=si)) - \theta (\=si) = \theta \prime (\=si)\delta \=si + \delta \theta i(\=si)

and, analogously,

(1.13) \delta \=ri = r\prime (\=si)\delta \=si + \delta ri(\=si).

We now take \delta \=si, \delta \=\theta i, \delta \=ri as independent. Moreover, from the conditions (1.2) and
(1.5) the following relations hold:
(1.14)

\delta r1(\=s1) = \delta r2(\=s2) = \delta r3(\=s3), \delta \=s3 =  - \delta \=s1, \delta \=s3 =  - \delta \=s2, \delta \=s1 = \delta \=s2.

Using (1.12) and (1.13) to represent \delta \theta i(\=si) and \delta ri(\=si) and the relations (1.5), (1.11)
rewrites

3\sum 
i=1

\biggl( 
 - 
\int \=si

0

(ki\theta 
\prime 
i)

\prime \delta \theta idsi + ki\theta 
\prime 
i(\=si)\delta 

\=\theta i  - ki\theta 
\prime 
i(0)\delta \theta i(0)

\biggr) 

+

3\sum 
i=1

\biggl( 
 - 
\int \=si

0

\delta Ni \cdot (r\prime i  - ti) dsi +

\int \=si

0

N\prime 
i \cdot \delta ri dsi  - Ni(\=si) \cdot \delta \=ri

+Ni(0) \cdot \delta ri(0) - 
\int \=si

0

Ni \cdot ni\delta \theta idsi

\biggr) 
+

3\sum 
i=1

\biggl[ 
ki
2
(\theta \prime i)

2  - ki(\theta 
\prime 
i)

2  - Ni \cdot (r\prime i  - ti) +Ni \cdot r\prime i
\biggr] 
\=si

\delta \=si

=

\int \=s1

0

pn1 \cdot \delta r1ds1  - 
\int \=s2

0

pn2 \cdot \delta r2ds2.

(1.15)

Now all independent variations can be carried out so that the following system of
differential equations is obtained:

(ki \theta 
\prime 
i)

\prime 
+Ni \cdot ni = 0, i = 1, 2, 3,(1.16a)

N\prime 
1 = pn1, N\prime 

2 =  - pn2,(1.16b)

N\prime 
3 = 0,(1.16c)

r\prime i = ti, i = 1, 2, 3.(1.16d)

The chordae tendineae are fixed on one side at the endpoint of rod 3, and on the
other side they are attached to the papillary muscles, whose position is here denoted
by rP . On the basis of the assumptions (1.2) and (1.3), the system of equations is
supplemented by the boundary conditions

r1(0) = r01, r2(0) = r02, N3(0) = qe,(1.17a)

\theta \prime i(0) = 0, i = 1, 2, 3,(1.17b)

where e := \bfr P - \bfr 3(0)
| | \bfr P - \bfr 3(0)| | denotes the direction of the force of intensity q exerted by the

chordae tendineae.
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ELEMENTARY MECHANICS OF THE MITRAL VALVE 81

Remark 2. The last boundary condition in (1.17a) assumes that the tension of the
chordae tendineae q is known. Dually, one could assume that a constraint applies: a
chorda tendinea of given length connects the endpoint of the leaflet and a fixed point
in the plane. Our approach simplifies the associated numerical problem. The two
strategies are equivalent from a theoretical standpoint: in principle one can span the
space of possible values of q and then a posteriori identify the value of the parameter
and the corresponding solution associated to a specific length of the chorda and a
specific fixation point.

Remark 3. The boundary condition (1.17b) has a precise mechanical meaning:
it assumes no torque at the boundary so that the leaflet can freely rotate around
the fixed point. Another possible assumption could be to fix the angle \theta = \=\theta at
the boundary, like in a wedged beam, or even to assume that a torsional spring
applies, yielding a Robin-type boundary condition \theta \prime + \chi (\theta  - \=\theta ) = 0. As the leaflet
during the cardiac cycle takes a range of different configurations, it is not obvious to
discern the physiologically correct boundary condition on the basis of ecocardiographic
observations. Notwithstanding such a difficulty, in section 2 we show that almost all
boundary conditions generate, in the regime of interest for cardiac applications, a
tensional boundary layer that can be avoided adopting a specific ``optimal"" choice.

In the triple point (point B in Figure1.1), (1.2) and (1.4) provide continuity of
position and angles

r1(\=s1) = r2(\=s2) = r3(\=s3),

\theta 1(\=s1) = \theta 2(\=s2) = \theta 3(\=s3) + \pi 
(1.18)

and are complemented by the balance of forces and torques derived from the boundary
terms of (1.15):

N1(\=s1) +N2(\=s2) +N3(\=s3) = 0,

k1(\=s1)\theta 
\prime 
1(\=s1) + k2(\=s2)\theta 

\prime 
2(\=s2) + k3(\=s3)\theta 

\prime 
3(\=s3) = 0.

(1.19)

The extra terms due to the total variations of the fields in the unknown contact
point, appearing in (1.15) in square brackets, can be understood as a continuity of
the Legendre transform of the strain energy (the Hamiltonian) or, in other contexts,
as the continuity of the Eshelby stress. Using (1.5) and (1.19) we eventually find the
condition that defines the curvilinear coordinates \=s1 and \=s2 of the interface point
(1.20)\biggl[ 

 - k1
2
(\theta \prime 1)

2 +N1 \cdot t1
\biggr] 
s=\=s1

+

\biggl[ 
 - k2

2
(\theta \prime 2)

2 +N2 \cdot t2
\biggr] 
s=\=s2

 - 
\biggl[ 
 - k3

2
(\theta \prime 3)

2 +N3 \cdot t3
\biggr] 
s=\=s3

= 0,

where relations (1.7), (1.14), and (1.16c) have been used. Using the relation existing
between normal vectors in the triple point (1.7) and the relation between reaction
forces (1.19), the last condition (1.20) simplifies as follows:

(1.21)  - k1
2
(\theta \prime 1)

2
\bigm| \bigm| \bigm| 
s=\=s1

 - k2
2
(\theta \prime 2)

2
\bigm| \bigm| \bigm| 
s=\=s2

+
k3
2
(\theta \prime 3)

2
\bigm| \bigm| \bigm| 
s=\=s3

= 0.

The statement of the differential problem is well posed: there are 18 unknown fields,
i.e., \theta i, \theta 

\prime 
i, N

x
i , N

y
i , xi, and yi for i = 1, 2, 3, plus \=s3. The system (1.16) contains

three second order scalar differential equations and six vectorial first order equations,
requiring altogether 18 boundary conditions plus an algebraic equation provided by
(1.17), (1.18), (1.19), and (1.21). The differential system is fully coupled: despite the
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fact that (1.16a) and (1.16b) apparently do not involve the position, their boundary
conditions do.

Remark 4. The system of equations (1.16)--(1.21) can be integrated immediately
for rod 3. From (1.16c), using the boundary condition (1.17a), we get

(1.22) N3(s) = qe.

Equation (1.16a) multiplied times \theta \prime 3 can be integrated thus obtaining

(1.23)
k3(s)

2
(\theta \prime 3(s))

2 =  - 
\int s

0

N3 \cdot n3\theta 
\prime 
3ds = qe \cdot (t3(s) - t3(0))

that has solution \theta 3(s) = \theta 3(0) = \theta 3(\=s3): the rod 3 is straight, with an inclination \theta 3
to be determined.

2. Asymptotic analysis. In this section we carry out an asymptotic analysis
of the nonlinear problem of a single leaflet subjected to the blood pressure and to the
boundary tension produced by the chordae tendineae under the assumption that they
detach from the tip parallel to the leaflet. Enforcing the large pressure regime that
characterizes the cardiac flow (see section 3.1), we exploit the existence of a small
parameter, and we demonstrate that tensional boundary layers exist for almost every
boundary condition. The perturbation results will be compared with fully nonlinear
numerical simulations in section 3.

Consider a single leaflet with constant bending modulus k. The equations of the
mechanical system follow from (1.16) with obvious simplification and notation:

(2.1)
k\theta \prime \prime +N \cdot n = 0,

N\prime + pn = 0.

Representing the tension in its normal and tangential components to the beam, N =
Nnn+Ntt, and using N\prime = N \prime 

tt - Nt\theta 
\prime n+N \prime 

nn+Nn\theta 
\prime t, (2.1) rewrites

k\theta \prime \prime +Nn = 0,(2.2)

N \prime 
t +Nn\theta 

\prime = 0,(2.3)

N \prime 
n  - Nt\theta 

\prime + p = 0.(2.4)

Multiplying (2.2) by \theta \prime we get

(2.5)
k\theta \prime \prime \theta \prime +Nn\theta 

\prime =
\Bigl( 1
2
k\theta \prime 2

\Bigr) \prime 
+N \cdot \theta \prime n =

\Bigl( 1
2
k\theta \prime 2

\Bigr) \prime 
 - N \cdot t\prime 

=
\Bigl( 1
2
k\theta \prime 2

\Bigr) \prime 
 - (N \cdot t)\prime +N\prime \cdot t =

\Bigl( 1
2
k\theta \prime 2

\Bigr) \prime 
 - (N \cdot t)\prime = 0

so that

(2.6) Nt =
1

2
k\theta \prime 2 + c,

where c is a constant to be determined by the boundary conditions. It is natural to
assume that the no external bending moment applies at s = 0 and s = L so that we
posit

(2.7) \theta \prime (0) = 0, \theta \prime (L) = 0.
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ELEMENTARY MECHANICS OF THE MITRAL VALVE 83

Furthermore, we introduce the angle \Omega between the direction of the beam at the
boundary e and the tangent t so that e \cdot t = cos\Omega , e \cdot n = sin\Omega . Hence,

(2.8) Nt(L) =  - q cos\Omega , Nn(L) =  - q sin\Omega .

Using the boundary conditions (2.7) and (2.8) in s = L, we obtain c =  - q cos\Omega . After
derivation of (2.2), (2.4) rewrites as a decoupled second order differential equation for
the curvature \theta \prime (s), involving the unknown angle \Omega :

(2.9) k\theta \prime \prime \prime +
1

2
k\theta \prime 3  - (q cos\Omega ) \theta \prime  - p = 0 .

We now recast (2.9) in dimensionless form in terms of the scaled variable \sigma = s/L
and the function z(\sigma ) = \partial \theta 

\partial \sigma (\sigma ). Hence, (2.9) rewrites as

(2.10) z\prime \prime +
1

2
z3  - qL2

k
z cos\Omega  - pL3

k
= 0,

where now (\cdot )\prime stands for the derivative with respect the dimensionless variable \sigma .
We are interested in studying this equation in the limit \^\alpha = pL3/k \rightarrow +\infty , which
corresponds to the high pressure regime characterizing the physiological state of the
mitral valve (see the discussion in section 3.1). In this limit, the last term must be
balanced by the third one so that pL3/k and qL2/k must be of the same order. Hence,
we define \eta = q/pL and \epsilon = 1/\^\alpha = k/(pL3), and the dimensionless problem reads

(2.11)

\left\{         
\epsilon z\prime \prime +

1

2
\epsilon z3  - (\eta cos\Omega )z  - 1 = 0,

z(0) = 0,

z(L) = 0.

The solution away from the boundaries (the outer solution) is obtained, to zeroth
order, by setting \epsilon = 0, and it is therefore zout =  - 1/(\eta cos\Omega ). The function zout does
not satisfy the boundary conditions; therefore there must exist a solution defined in a
boundary layer (the inner solution) that smoothly connects zout with the boundary
values. The uniform solution can be found by the method of matched asymptotic
expansions [2] described below.

\bullet At the boundary \sigma = 0, we set X = \sigma /\delta (\epsilon ), with \delta \ll 1 as \epsilon \rightarrow 0. The layer
thickness \delta is yet to be determined. A magnification of the solution in the
boundary layer is obtained by rescaling z(\sigma ) = Z(X)| X=\sigma /\delta . Equation (2.11)
becomes

(2.12)
\epsilon 

\delta 2
Z \prime \prime +

1

2
\epsilon Z3  - (\eta cos\Omega )Z  - 1 = 0 .

A dominant balance argument shows that the distinguished limit is \epsilon /\delta 2 = 1,
which yields \delta (\epsilon ) =

\surd 
\epsilon . We can now write the inner solution in the boundary

layer in terms of such a small parameter Zinn,1(X) = Z0(X) +
\surd 
\epsilon Z1(X) +

O(\epsilon ). The leading order problem is

(2.13)

\Biggl\{ 
Z \prime \prime 
0  - (\eta cos\Omega )Z0  - 1 = 0,

Z0(0) = 0,

whose solution is Z0(X) =  - 1
\eta cos\Omega (1  - e - X

\surd 
\eta cos\Omega ). We observe that the

other possible solution, namely, eX
\surd 
\eta cos\Omega , must be discarded since it cannot

match the outer solution (it diverges as X \rightarrow \infty ).
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\bullet At the boundary \sigma = 1, we define the inner variable X = (1  - \sigma )/\delta . Like
in the previous case, (2.11) takes the form (2.12); thus the thickness of the
boundary layer is again \delta =

\surd 
\epsilon , and the solution Zinn,2(X) to leading order

is again Zinn,2(X) =  - 1
\eta cos\Omega (1  - e - X

\surd 
\eta cos\Omega ), with the only difference that

the inner variable is now defined as X = (1 - \sigma )/
\surd 
\epsilon .

We notice that in both cases there are no integration constants because they have been
ruled out by the boundedness of the inner solutions. However, matching to leading
order is satisfied since limX\rightarrow +\infty Z0(X) = lim\sigma \rightarrow 0 z0(\sigma ) =  - 1/(\eta cos\Omega ). Finally, the
uniform solution is

(2.14)

zuni(\sigma ) = Zinn,1(\sigma ) + zout(\sigma ) + Zinn,2(\sigma ) - zmatch,1(\sigma ) - zmatch,2(\sigma )

=  - 1

\eta cos\Omega 

\bigl( 
1 - e - \sigma 

\surd 
\eta cos \Omega 

\epsilon 

\bigr) 
 - 1

\eta cos\Omega 

\bigl( 
1 - e - (1 - \sigma )

\surd 
\eta cos \Omega 

\epsilon 

\bigr) 
+

1

\eta cos\Omega 

=  - 1

\eta cos\Omega 

\bigl( 
1 - e - \sigma 

\surd 
\eta cos \Omega 

\epsilon  - e - (1 - \sigma )
\surd 

\eta cos \Omega 
\epsilon 

\bigr) 
.

Interestingly, the nonlinear term 1
2z

3 does not affect the solution to leading order, but
it only enters in the higher order approximations. In dimensional form, the curvature
of the mitral leaflets is
(2.15)

\theta \prime (s) =
d\theta 

ds
=

1

L
zuni(s/L) =  - p

q cos\Omega 

\Bigl( 
1 - e - s

\surd 
q cos\Omega /k  - e - (L - s)

\surd 
q cos\Omega /k

\Bigr) 
.

Finally, in order to find the angle \Omega , we use the remaining boundary condition, namely,
(2.8b), and (2.2) evaluated in s = L:

(2.16) k\theta \prime \prime (L) = q sin\Omega .

We notice that the second order equation (2.2) provides the supplemental boundary
condition for the third equation (2.9) that has been obtained by further derivation.

Now \theta \prime \prime (L) is obtained by differentiating (2.15) and setting s = L; in dimensionless
form, after some algebra, (2.16) reads

(2.17) 1 - e
 - 
\sqrt{} 

\eta cos\Omega 
\epsilon = \eta sin\Omega 

\sqrt{} 
\eta cos\Omega 

\epsilon 
,

which implicitly defines the angle \Omega . To leading order, when \epsilon \rightarrow 0, the exponential
rapidly vanishes, and the left-hand side is finite. Therefore, it must be that \Omega (\epsilon ) \ll 1
to balance the diverging term on the right-hand side of (2.17), and, to leading order,
we find

(2.18) \Omega \sim 
\sqrt{} 
\epsilon /\eta 3;

this is a small angle as \epsilon \rightarrow 0 so that cos\Omega can be safely approximated to 1. In
physical terms, this means that the chordae tension is parallel to the leaflet free end,
a rather natural condition in the high pressure regime we consider.

The condition cos\Omega \approx 1 allows us to further simplify the curvature of the leaflet
so that we can write

(2.19) \theta \prime (s) =  - p

q

\Bigl( 
1 - e - s

\surd 
q/k  - e - (L - s)

\surd 
q/k

\Bigr) 
.
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2.1. Boundary layers and boundary conditions. Summarizing, the asymp-
totic analysis tells us that in the regime of high pressure, the leaflet takes a constant
curvature away from the boundary (a circular shape of radius q/p), and near its edges
there are two boundary layers of thickness

\sqrt{} 
k/q. While the perturbative analysis

holds under assumption of small \epsilon (small bending modulus versus pressure), the cur-
vature taken by the rod is independent of the material properties and depends only
on the ratio of the pressure versus the edge force (as defined in the parameter \eta ).
The outer solution is nothing but the Laplace law, and it coincides with the solution
found by Arts et al. [1].

On the basis of the degrees of freedom in the enforcement of boundary conditions
discussed in the Remark 3, we wonder if the boundary layers could be removed by a
suitable choice. The answer is positive: if the boundary condition matches the outer
constant solution (z(0) =  - 1/\eta or z(1) =  - 1/\eta ), the inner region vanishes. This nice
mathematical condition is, however, not meaningful from a mechanical point of view:
by definition z = \theta \prime (\sigma ), and imposing a fixed value for \theta \prime (0) means that a pointwise
torque should apply at the boundaries, a condition far from physiological reality. On
the other hand, we conjecture that a distinguished Dirichlet boundary condition on
\theta (0) (not on its derivative) could remove the boundary layer too. While this theoret-
ical result is more involved to obtain analytically because of the entangled boundary
conditions of the system of equations (2.1), we show by numerical simulations that
our intuition is correct: there exists a boundary condition \theta (0) = \=\theta that drives \theta \prime (0)
to the Laplace solution everywhere and makes the tensional boundary layer vanish.

3. Numerical simulations.

3.1. Nondimensional numbers and parameters. In this section we address
the numerical integration of the nonlinear equations that model the equilibrium of a
single leaflet and a closed mature mitral valve. Numerical results of the integration
of the system of equations (2.1) ((1.16)--(1.20), respectively) are shown in a range of
parameters of physiological interest.

A dimensional analysis of (1.16) reveals that there are four relevant nondimen-
sional parameters of the full nonlinear system of equations:

(3.1) \alpha = Pd4/\=k, \beta = q/Pd2, \gamma 1 =
\ell 1
d
, \gamma 2 =

\ell 2
d
,

where \=k is a representative value of k(s).
Typical physiological values of the parameters for an healthy patient are the

systolic difference between chambers P = 120 mm Hg, the diameter of the mitral
valve annulus d = 30 mm [7], and the bending modulus \=k \simeq 10  - 100 mN mm2

[4], thus yielding a typical value \alpha \simeq 105  - 106. Notice that the pressure p of our
bidimensional model (1.16b) is a force per unit length, while P is a force per unit
surface: in principle, the unknown p should be read as the integral of P along the
third spatial dimension, which is not represented in this model.

The thickness of the leaflets varies along the curvilinear coordinate; this variation
is immaterial for our rod model but reflects in the bending modulus k(s) that depends
quadratically on the thickness. We therefore smoothly modulate k(s) around \=k from
stiffer values near to the annulus to a softer modulus in the middle region for an order
of magnitude.

The nondimensional parameter \beta accounts for the balance of forces orthogonally
to the rod and for the simulations is chosen to be \beta \simeq 0.2. In the same vein, the
parameters \gamma 1 and \gamma 2 represent the ratio of the length of each rod from their fixed
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endpoints to the triple attachment point A of Figure 1.1 (see Remark 1) to the distance
d. From echocardiographic observations they typically range around \gamma 1 \simeq 0.8 and
\gamma 2 \simeq 0.98. On the same echocardiographical basis, for numerical convenience we
enforce that the unit vector e has a given direction, forming an angle \pi 

18 with the
vertical. In principle, if an information on rP is provided, the orientation of e can be
varied until the correct anchoring point is reproduced.

3.2. Single leaflet (primordial mitral valve). The single leaflet system stud-
ied in section 2 has not only an interest as a reduced system that can be more easily
tackled by mathematical techniques but also has a biological relevance as a distin-
guished embryological subject per se. In the embryo the mitral valve originates from
the so-called endocardial cushions, which is a thickening of the ventricular wall lo-
cated immediately beneath the valve annulus [9]. During the initial phase, within
these ``cushions,"" a space is progressively created, which separates a layer of cells
from the cardiac wall. Later, some ``fenestrations"" develop in the inferior area of this
layer of cells, and the endocardial cushion space is thus put in communication with
the ventricle. This allows the blood to enter the space and, with its flow and pressure,
to force the endocardial cell layer to grow and to differentiate: the superior part of the
layer generates the leaflets, while the inferior part (the fenestrated one) creates the
chordal system. This process continues until the leaflets get in touch and the valve
assumes its final configuration. Hydrodynamic forces are essential to this process [14].

In the framework of the mechanical model at hand, an immature mitral valve is
therefore composed by two flaps that do not lean against each other; they only take
a geometrical configuration produced by a balance of pressure and wire tension.

Fig. 3.1. Profile of a single leaflet of the mitral valve (left) for \alpha = 3 \cdot 105 and \beta = 0.2:
the shape is dictated by the balance of pressure and force produced by the chordae tendineae in the
direction tangent to the flap without leaning on the other one. The tangent tension Nt is constant;
the normal tension in the leaflet Nn is negligible.

The results of the numerical integration of (2.1) with boundary conditions (2.7)
are reported in Figure 3.1, where a flap is supposed to be grown enough to be very
close to touching the other one (not shown). The mechanical regime is defined by the
nondimensional numbers \alpha = 3 \cdot 105 and \beta = 0.2. In such a regime, we can assume
that the blood flow through the valve is very small and the pressure is not significantly
different from the systolic peak. The numerical results correspond therefore to the
same nondimensional data to be adopted for the healthy mature mitral valve in the
next section. As expected, the shape of the flap is circular, the curvature radius being
| 1/\theta \prime | = q/p (Figure 3.1(left)).
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ELEMENTARY MECHANICS OF THE MITRAL VALVE 87

In agreement with the asymptotic analysis carried out in section 1.2, there are
boundary layers in the normal tension Nn at both the endpoints of the flap (Figure
3.1(right)).

As shown in Figure 3.2, the dimensionless curvature L\theta \prime (s) that results after
numerical integration of the full nonlinear system compares very well with the one
obtained by the asymptotic expansion in section 2 (the uniform solution zunif; see
(2.19) multiplied by L).

Fig. 3.2. Comparison between the nonlinear dimensionless curvature L\theta \prime (blue curve) obtained
integrating the full nonlinear system, and the uniform solution obtained by asymptotic expansion
(red dashed curve), as given in (2.19) multiplied by L.

On the basis of perturbative analysis, in section 2.1 we have conjectured that the
boundary layer at the annulus can be eliminated by adopting a distinguished boundary
condition in s = 0: instead of the hinge condition \theta \prime (0) = 0 we consider the leaflet
as a wedge beam and thus impose the boundary condition \theta (0) = \=\theta for a suitable \=\theta .
As expected, the numerical results confirm our argument, for \=\theta =  - 27.32° smoothly
connects the circular outer solution with the boundary \theta (0), thus suppressing the
tensional boundary layer (see Figure 3.3).

Numerical results for \beta = 0.32, corresponding to a stronger pulling force produced
by the chordae tendineae, are reported in Figure 3.4 The rod bends more, and the
optimal initial angle suppressing the left boundary layer is \theta (0) = 18.35°.

3.3. Mature mitral valve. Figure 3.5 shows the geometrical configuration of
the leaflets of the mitral valve subject to a pressure difference obtained by numerical
integration of (1.16)--(1.21). The mechanical regime is defined by the nondimensional
numbers \alpha = 3 \cdot 105 and \gamma 1 = 0.8 \gamma 2 = 0.98 in both cases. For \beta = 0.2 (left) we
have a physiologically correct placement of the leaflets, while for \beta = 0.1 (right) the
valve prolapses in the atrium because the tension of the chordae does not provide the
correct balance to the pressure.

Figure 3.5(left) is in qualitative accordance with the shape of an healthy mi-
tral valve as observed in echocardiography. The chordae form the expected angle of
10 degrees with the vertical axis. For a quantitative comparison, Table 3.1 reports
the physiological relevant measures that are typically adopted in clinical practice as
indicators of an healthy mitral valve:

\bullet \phi 1, \phi 2: positive angles between the leaflets and the plane of the annulus,
formally \phi 1 := \theta 1(0) - \pi and \phi 2 := 2\pi  - \theta 2(0);

\bullet h: distance between the flaps attachment point and the annular plane;
\bullet s1/d, s2/d: ratio between the length of non adhering leaflets and the annulus
diameter.
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Fig. 3.3. Results of the numerical approximation of the equations of a single leaflet with \beta = 0.2
and specific boundary condition \theta (0) =  - 27.32°. The plots report the normal (Nn) and tangential
(Nt) tensions, the dimensionless curvature L\theta \prime , and the placement of the leaflet. The choice of a
specific boundary angle suppresses the tensional peak at the left boundary.

The physiological values are listed on the second column of the table, while values
obtained by the numerical integration of our model are written in the third and
fourth columns (healthy state of Figure 3.5(left)). There is a satisfactory quantitative
correspondence between the numerical and measured values except for the vertical
coordinate of the triple point h. Since Pd2 >> \=k, the shape profile far from the
boundaries is not significantly affected by the bending stiffness of the leaflets, but it
is essentially dominated by the pressure. Indeed the circular shape of the leaflets (see
Figure 3.5) is mainly determined by the balance between the pressure and the tension
of the chordae tendineae, while the bending modulus has a negligible role far from
the boundaries. This results from the dimensional analysis of section 3.1, where the
parameter \alpha accounts for the ratio between pressure and bending: \alpha = 3 \cdot 105 means
that the pressure dominates over bending.

Figure 3.6 plots the components of the reaction forces on the leaflets N1 and
N2 versus the dimensionless curvilinear coordinate \sigma = s/\=si, i = 1, 2. The normal
component is much smaller than the tangential one except at the very endpoints of the
rods, as discussed in section 1.2 for a single leaflet. The small normal component of
the reactions Ni takes a geometrical meaning when considering (1.16a): the quantity
k(s)\theta \prime (s) is almost constant, thus yielding that the curvature \theta \prime nearly behaves like
the inverse of the bending modulus k(s).

The tensional boundary layers at the annulus can be suppressed also in the case
of a full mitral valve by a suitable prescription of the angle at the endpoint. In
Figure 3.7 are the reported results of the numerical integration of the mitral valve for
\alpha = 3 \cdot 105 and \beta = 0.2, with boundary conditions at the annulus \theta 1(0) = 11.12° and
\theta 2(0) = 0.5°.
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Fig. 3.4. Numerical integration of the equations for a single leaflet performed with \beta = 0.32
imposing the specific boundary conditions \theta (0) = 18.35°. The plots report the normal (Nn) and
tangential (Nt) tensions, the dimensionless curvature L\theta \prime , and the profile of the leaflet in the plane.
The choice of a specific boundary angle suppresses the tensional peak at the left boundary.

Fig. 3.5. Position of the leaflets of the mitral valve with kinematics constrained by the elongation
of the chordae tendineae. Both numerical simulations correspond to \alpha = 3 \cdot 105, \gamma 1 = 0.8, and
\gamma 2 = 0.98, while \beta = 0.2 (left) and \beta = 0.1 (right). The chordae tendineae have the correct
physiological length (left), or they are too long to prevent the prolapse of the mitral valve (right).

3.4. Sensitivity analysis. From an applicative point of view, it is important to
consider the sensitivity of the results to variations of parameters that cannot be ac-
curately determined. In our case, while pressure and stiffness (\alpha and \beta , respectively)
are well known in an healthy patient from medical and soft biomechanics studies, the
knowledge of the curvilinear coordinates of the early contact point is to be determined
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Table 3.1
Physiological and numerical values of the angles that the leaflets make with the annular plane

in the hinge points.

Physiological values Numerical values
Leaflet angles Right: \phi 1 Left: \phi 2 Right: \phi 1 Left: \phi 2

37° 21° 31° 18°
\=s1/d 0.5 0.72
\=s2/d 0.67 0.90
h/d 0.26 0.53

Fig. 3.6. Tangential and normal components of the tensions N1 (left) and N2 (right) obtained
with \alpha = 3 \cdot 105, \beta = 0.2, and boundary condition \theta \prime (0) = 0. The normal component is negligible
versus the tangential one.

Fig. 3.7. Tangential and normal tension for the leaflets 1 (left) and 2 (right), obtained with
\alpha = 3 \cdot 105, \beta = 0.2, and boundary conditions on the initial angle of each leaflet \theta 1(0) = 11.12°
and \theta 2(0) = 0.5°. The choice of these specific boundary conditions prevent the emergence of stress
boundary layers at the annulus.

(see Remark 1). We are therefore interested in exploring numerically how the simu-
lation results, reported in Table 3.1, are affected by variations of the parameters \gamma 1
and \gamma 2, while keeping all the other parameters fixed. To this aim, we perform a series
of simulations with different values of the parameters \gamma 1 and \gamma 2

The results are reported in Tables 3.2 and 3.3. It is apparent that, while the
increase of \gamma 1 and \gamma 2 up to 10\% affects \=s1/d and \=s2/d and the angles, it has almost
no effects on h/d. This means that the y coordinate of the contact point is largely
independent from the parameters \gamma 1 and \gamma 2.
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Table 3.2
Numerical values of the tangent angle at the fixed point (\phi 1 and \phi 2), curvilinear cooordinate of

the contact point (\=s1/d and \=s2/d), and depth of the contact point h/d for different values of \gamma 1.

Leaflet angles Contact coordinate Depth
\gamma 1 \phi 1 \phi 2 \=s1/d \=s2/d h/d
0.7 37° 14° 0.67 0.95 0.53
0.75 34° 16° 0.69 0.92 0.53
0.8 31° 18° 0.72 0.9 0.53
0.85 29° 20° 0.74 0.87 0.53

Table 3.3
Numerical values of the tangent angle at the fixed point (\phi 1 and \phi 2), curvilinear cooordinate of

the contact point (\=s1/d and \=s2/d) and depth of the contact point h/d for different values of \gamma 2.

Leaflet angles Contact coordinate Depth
\gamma 2 \phi 1 \phi 2 \=s1/d \=s2/d h/d
0.9 27° 22° 0.76 0.86 0.53
0.95 30° 20° 0.73 0.88 0.53
0.98 31° 18° 0.72 0.9 0.53
1 32° 17° 0.71 0.91 0.53

Table 3.4
Numerical values of the tangent angle at the fixed point (\phi 1 and \phi 2), curvilinear cooordinate of

the contact point (\=s1/d, \=s2/d, and \=(s3)/d), and depth of the contact point h/d for different values
of \gamma 1 and \gamma 2.

Leaflets angles Contact coordinate Depth
\gamma 1 \gamma 2 \phi 1 \phi 2 \=s1/d \=s2/d \=s3/d h/d
0.75 0.91 30° 19° 0.73 0.89 0.02 0.53
0.8 0.98 31° 18° 0.72 0.9 0.08 0.53
0.92 1.2 37° 14° 0.67 0.95 0.24 0.53

By contrast, in Table 3.4 are the reported results obtained by increasing both \gamma 1
and \gamma 2, while keeping the ratio \gamma 1/\gamma 2 constant. The angle of the right rod increases,
while the angle of the left rod decreases. Accordingly \=s1/d decreases and \=s2/d increases
as well as \=s3/d, while h/d still remains constant. The fact that h/d remains constant
means that it is mainly determined by the parameter \beta which fixes the curvature of
the leaflets.

Although far from the boundaries the solution is simply defined by two crossing
circles; one should not infer that the full solution of the mechanical system is trivially
the intersection of two circles because it is completely defined by other two unknowns:
the curvilinear coordinate of the attachment point and the detachment angle of each
leafleat from the annulus that stem from the complex nonlinear interactions of the
system.

3.5. A mechanical remark and an embryological conjecture. The per-
turbative analysis of section 2 shows that, in the high pressure regime of interest,
along the single flap almost everywhere the tension is essentially equal to the force
q exerted by the chordae tendineae at the free endpoint. The numerical results for
the complete valve show that this is not true when the rods are in contact: the
plots of tension of Figures 3.1 and 3.6 are obtained for the same values of the pa-
rameters \alpha and \beta , but the computed values of Nt are completely different. As a
matter of fact, the contact between the rods makes the tensional dynamics more
complex: while the tensional balance (1.19) holds in the triple point, its split in
the single rods cannot be easily determined without addressing the whole differential
problem.

D
ow

nl
oa

de
d 

01
/0

7/
22

 to
 1

31
.1

75
.1

2.
86

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

92 D. AMBROSI, L. DEORSOLA, S. TURZI, AND M. ZOPPELLO

The sharp difference in tension that we predict in a single flap versus a full valve
with leaflets in contact might have an embryological meaning. The study of the
single leaflet of section 3.2 and of the full mature valve of section 3.3 are not only
of theoretical interest because one system is the other one without contact but also
because the latter system is embryologically the primordial state of the former. On the
basis of such a remark, we have the possibility to argue about a possible mechanical
role of tension in the morphogenesis of the mitral valve [15].

A longstanding morphological question is how the organs know that they have
reached the right size [17]. In some cases the diffusion decay of morphogens, a process
characterized by a decay length, plays a role. In some other cases the mechanical
tension can provide an immediate and global transmission of information about a
crucial event that is intrinsically related with the achievement of the final functional
length. On the basis of our theoretical results, it is quite natural to hypothesize
that a regulation of cell duplication can be based on the trigger of tensional value
that can be produced only by the mutual contact of flaps. A comparison between
Figure 3.6(left) and Figure 3.1(right) reveals that the tangent tension differs in the
mature and immature system. This difference emerges after the contact between
flaps. Experiments will be of course necessary in the future to validate such a conjec-
ture.

4. Final remarks. A large body of literature exists on the numerical models
for the mitral valve, in its full three-dimensional time-dependent interaction with the
flow field, when the valve is represented as a structure immersed in the blood flow (see
[18] as an example). In this work we have followed a different approach that is almost
unexplored in the literature (a remarkable exception is [5]). We have considered a
bare-bones model where the dimensionality of the problem is reduced to the planar
case, the large aspect ratio of the leaflet is enforced representing it as a rod, and we
have focused on the static balance between blood pressure, tension in the leaflets, and
tension of the chordae tendineae. The bidimensional model of the atrial valve obtained
insofar has been rigorously deduced and illustrated both in its mature configuration,
at systolic closure, and its primordial form, when atrioventricular cushions remodel to
form the valve leaflets. The simplicity of the mathematical model, while derived on
the basis of rigorous arguments, provides an extremely flexible tool that can be fully
controlled in terms of the bending modulus, the early contact point between leaflets,
the coordinates of the papillary muscles, and the length of the chordae tendineae.
Outputs of the numerical simulations are quantities of routine clinical interest like
the deflection angle of the leaflets from the annular plane and the location of the first
contact point between the flaps. One can notice that even though in our model we
suppose the tension of the chordae tendineae to be known, we can recast the problem
supposing to know the physiological length of the wires and from that compute their
tension.

The flexibility of the model has two main consequences. The equations can be
numerically integrated in less than one second on a laptop, thus providing a potentially
immediate clinical support to surgeons in their practice to design the shape of the
leaflets or the length of the chords on the basis of the elementary patient's morphology.
The computational cost is so low that a very large number of surgery solutions could
be explored in real time.

The simplicity of the model also offers the possibility to address more basic science
questions as related to the valvular morphogenesis. This issue has been investigated
in the past literature in terms of purely fluid dynamical solicitations [3]. The most
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ambitious study of the valvulogenesis process has been addressed by Buskohl, Jenkins,
and Butcher [6]: they adopt a two-dimensional (three-dimensional axial-symmetric)
representation of the cushion, and they numerically solve both the blood flow and the
coupled elastic structural problem of the cushion. Endowing the material evolution
of a simple growth law, they numerically demonstrate that a physiological evolution
of the cushion can be predicted on the basis of a purely mechanical stimulus. Our
work is somehow complementary to theirs: our rod model applies only in the late
stage of the morphogenetic process when the cushion has largely remodeled in terms
of leaflets and chordae tendineae. In such a regime, we can compare the stress in the
flap before and after closure. The computed large difference in stress, due to the large
difference in pressure between the open- and closed-valve regime, might support an
argument in favor of a mechanobiological control of the growth of the mitral valve.
Our model could potentially be an agile theoretical tool to support the study of the
origin of congenital cardiac defects [10].
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