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Abstract

The orientational order of nematic liquid crystals is traditionally studied by means of the second-
rank ordering tensor S. When this is calculated through experiments or simulations, the symmetry
group of the phase is not known a-priori, but needs to be deduced from the numerical realisation of S,
which is affected by numerical errors. There is no generally accepted procedure to perform this anal-
ysis. Here, we provide a new algorithm suited to identifying the symmetry group of the phase. As a by
product, we prove that there are only five phase-symmetry classes of the second-rank ordering tensor
and give a canonical representation of S for each class. The nearest tensor of the assigned symmetry
is determined by group-projection. In order to test our procedure, we generate uniaxial and biaxial
phases in a system of interacting particles, endowed with D∞h or D2h symmetry, which mimic the out-
come of Monte-Carlo simulations. The actual symmetry of the phases is correctly identified, along with
the optimal choice of laboratory frame.

1 Introduction

The orientational order of an ensemble of molecules is a key feature in complex fluids made of anisotropic
molecules, e.g. liquid crystals. For example, the phase of a liquid crystal affects some rheological and op-
tical properties of the material, such as viscosity coefficients and refracting index. From a mathematical
viewpoint, the phase is a macroscopic manifestation of the point-group symmetry of the mesoscopic
orientational order of the molecules. The precise quantification of the notion of order requires the intro-
duction of the orientational probability density function of the molecules. It is impractical to study this
function in its full generality from a mathematical perspective. Furthermore, only its very first moments
are amenable of experimental investigation. For these reasons the orientational probability density is
usually truncated at the second-rank level and this defines the second-rank ordering tensor S. Usually,
the matrix entries of S are considered to capture correctly the most important features of the mesoscopic
order.

The final output of a molecular dynamics or a Monte Carlo simulation of a liquid crystal compound
is given in terms of the orientation of the molecular frames of reference, for all molecules. The order-
ing tensor S is then obtained by averaging over all molecular orientations. However, the computations
have to be carried out with respect to an arbitrarily chosen laboratory frame. By contrast, key physical
information as phase symmetry, directors and order parameters are readily accessible only when the
laboratory axes are properly chosen in agreement with the yet unknown underlying symmetry of the ori-
entational distribution. Therefore, the experimental or simulation data need to be analysed and refined
in order to capture the physical features of the system at the meso-scale and there is no standard method
to perform this analysis.
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The main motivation of the present work is to provide such a systematic procedure to determine
the symmetry class (the “phase” of the system), the symmetry axes (the “directors”), and the scalar or-
der parameters of a liquid crystal compound whose second-rank ordering tensor is obtained through
experiments or simulations.

Experimental or numerical errors are a further source of complications and may hinder the correct
identification of the phase symmetry, even in the simplest cases. For instance, a uniaxial order could
be described naively as a phase in which rod-like molecules are substantially aligned parallel to a fixed
direction, identified by a well defined director; in such phase most of the entries of S ought to vanish, but
the presence of errors can make all the entries generally non-zero. Furthermore, an unwise choice of the
laboratory axes may be the cause of several non-vanishing entries. When dealing with such an ordering
tensor, it may not be immediately evident whether these non-vanishing entries reveal an intrinsic lack
of uniaxial phase symmetry or are a consequence of one –or possibly both– of the issues described.

Our strategy takes inspiration from a similar problem in Elasticity where the main concern is the
identification of the linear elastic tensor of a particular material symmetry. This problem has been in-
tensively studied by a number of authors in the last decades. We refer to [1, 2] for a historical overview.
In particular, we adopt similar mathematical techniques and in this respect we have found the following
papers particularly illuminating [1, 2, 3, 4, 5, 6].

This paper is organised as follows. Sec. 2 reviews the theoretical background on orientational order
parameters; namely, the spherical and Cartesian definitions of orientational ordering tensors are dis-
cussed. The specific case of second-rank ordering tensors is developed in Sec. 3. The definitions we
provide here best fit the group-theoretic analysis put forward in the rest of the paper, and allow taking a
non-standard view on this topic, by describing the ordering tensor in terms of a linear map in the space of
symmetric, traceless second rank tensors; an analogous approach is found in Refs. [7, 8, 9, 10]. In Secs. 3.2
and 3.3 we define the notion of symmetry-class of an ordering tensor and prove that it is only possible
to distinguish five phase-symmetry classes at the second-rank level. A finer identification of the phase
group of a non-polar liquid crystal requires higher rank ordering tensors. The following Sec. 4 deals with
the identification of the closest ordering tensor that belongs to a given symmetry class. To this end, we
introduce the invariant projection on a chosen symmetry group, define the distance of the raw order-
ing tensor from one of the five symmetry classes and provide a canonical representation of the ordering
tensor in each symmetry class. After all these mathematical ingredients are established, we describe the
algorithm for the determination of the effective phase in Sec. 4.3. Sec. 5 contains the discussion of two
paradigmatic examples where the algorithm is put into practice and Sec. 6 summarises the results.

1.1 Notations.

For the reader’s convenience, let us give a brief description of some notational conventions used through-
out the paper.

1. Vectors in the linear space W isomorphic to R3 are denoted by boldface small letters (a, b, c, . . . ,
u, v, . . . ). After choosing an orthonormal basis {e1, e2, e3}, the coordinates of a vector v are denoted
with the same plain letter, and a subscript (in general i = 1, . . . , 3) distinguishes the coordinates:
v= v1e1+ v2e2+ v3e3. This avoids confusion between v1, which the vector 1 in a list of vectors, and
v1 which is the first coordinate of vector v: v1 = v ·e1. Unit vectors in the laboratory reference frame
play a special role, therefore we will denote them by `ξ, with ξ= x , y , z .

2. Second-rank tensors, i.e. linear maps L: W →W in the linear space W , are denoted by boldface
capital letters (A, B, . . . , R, S, T, . . . ); I is the identity tensor.

3. The tensor (or dyadic) product in W between vectors a and b is a second-rank tensor such that
(a⊗b)v= (b ·v)a for every vector v, where the dot˙denotes the standard inner (scalar) product (i.e.
the matrix representative of the dyadic product is (a⊗b)i j = ai b j (i , j = 1, . . . , 3) in an orthonormal
basis).

4. The scalar product between two second-rank tensors T, L is defined as

T ·L= tr(TT L). (1)
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5. Second-rank tensors can be endowed with the structure of a linear space, denoted by L (W ); linear
maps T: L (W )→ L (W ) in such space are denoted by “blackboard” capital letters (S,T, . . . ).

6. The square tensor product � between second-rank tensors is to be interpreted as a tensor dyadic
product:

(L�M)T= (M ·T)L, for every tensor T.

7. O(3) is the orthogonal group, i.e. the group of all isometries of W (R3) keeping the origin fixed;
A ∈O(3)⇔ A−1 =AT ⇒ det A=±1, where the superscript ()T denotes the transposition.

8. SO(3) is the special orthogonal group, i.e. the subgroup of O(3) of elements R satisfying det(R) = 1.
In other words, the group of 3D rotations.

9. Similarly, O(2) is the orthogonal group in two dimensions, and SO(2) is the special orthogonal
group in two dimensions

10. For point symmetry groups, subgroups of O(3), we comply with the standard Schönflies notation
[11, 12, 13]. Here, we only give a brief description of these groups and refer the reader to the cited
references for a more in-depth discussion. The complete list include the seven infinite sequences
of the axial groups Cn , Cnh , Cn v , S2n , Dn , Dnd , Dnh and seven exceptional groups T , Td , Th , O , Oh , I ,
Ih . The axial group Cn contains n-fold rotational symmetry about an axis, and Dn contains n-fold
rotational symmetry about an axis and a 2-fold rotation about a perpendicular axis.

The other axial groups are obtained by adding reflections across planes through the main rotation
axis, and/or reflection across the plane perpendicular to the axis. In particular, sub-indexes h , v ,
and i stands for “horizontal”, “vertical” and “inversion” and denotes, respectively, the presence of a
mirror reflection perpendicular to rotation axis (σh ), a mirror reflection parallel to the rotation axis
(σv ) and the inversion (ι =−I). We recall that C1 is the trivial “no symmetry” group; S2 is the group
of order two that contains the inversion and is usually written as Ci ; the group of order two with
a single mirror reflection is denoted by C1h , C1v or Cs . By contrast, the seven exceptional groups
contain multiple 3-or-more-fold rotation axes: T is the rotation group of a regular tetrahedron, O
is the rotation group of a cube or octahedron and I is the rotation group of the icosahedron. Finally,
taking n→∞ yields the additional continuous groups: C∞, C∞h , C∞v , D∞, D∞h . C∞ is another
notation for SO(2), and C∞v is O(2), which can be generated by C∞ and a reflection through any
vertical plane containing the vertical rotation axis.

11. The ensemble average of a function χ with respect to the orientational probability distribution of
the molecules is sometimes denoted by angle brackets: 〈χ〉.

2 General background on orientational order parameters

In the first part of the present section, we recall the basics of liquid crystal theory; the simplest mesogenic
molecules have cylindrical symmetry (D∞h , see Sec. 1.1(10.)), and if they are basically arranged so as to
have their main axis (identified by a unit vector m parallel to the cylindrical symmetry axis) along one
preferred direction, the mesophase is uniaxial; however, each molecule might slightly deviate from the
alignment direction, and in a uniaxial phase this deviation occurs randomly with equal probability in
any other direction.

Formally speaking, if f (m) is the distribution describing the probability that the direction of the main
axis of the molecule is exactly m, and considering that f (m) = f (−m), since the opposite direction cannot
be distinguished due to the symmetry of the molecule, we need to resort to the second moment of the
distribution

N=

∫

S 2

(m⊗m) f (m) dΩ ,

where the integration is performed over the unit sphere S 2, in other words on all directions (e.g. dΩ =
sinβdβ dα, with α and β defined as the colatitude and the azimuth in a spherical frame).
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Since we are interested in describing non-isotropic phases, typically the order tensor Q = N− 1
3 I is

used, which is identically zero in the isotropic phase. Q is a symmetric traceless tensor (since N is sym-
metric and tr N = 1), and a uniaxial phase corresponds to (at least) two equal eigenvalues for Q; if we
choose a laboratory (orthonormal) reference frame (`1,`2,`3) for which `3 is along the preferred direc-
tion of the molecule (known as the director n), we can write

Q= S
�

`3⊗`3− 1

3
I
�

= S
�

n⊗n− 1

3
I
�

; (2)

the scalar S ∈ [− 1
2 , 1] is the main uniaxial order parameter, and is actually the ensemble average 〈 3

2 cos2β−
1
2 〉; S = 1 would describe “perfect” alignment along n1.

We point out that the matrix representation of the tensor Q = S (n⊗ n− 1
3 I), which intrinsically de-

scribes a uniaxial phase, can be strongly different from the diagonal form if the reference lab frame
is poorly chosen (recall that the elements of the matrix representative of the dyadic product n⊗ n are
ni n j , i , j = 1, . . . , 3; cf. Sec. 1.1).

In a generic uniaxial phase, the order parameter does not attain its maximum value, as molecules are
not perfectly aligned along n. However, all molecules might deviate from the direction of n not entirely in
a random way. To picture the situation, we can say that in the previous case the molecules are uniformly
distributed in a circular cone the axis of which has direction n, although the aperture of the cone is small.
Under different circumstances, e.g. a frustration induced by the boundary of the region in which the
liquid crystal is confined, the molecules might be distributed in an elliptical cone, meaning there are
two directions orthogonal to n along which the molecule have maximum and minimum deviations. By
properly choosing the laboratory frame, the order tensor (now having 3 different eigenvalues) can be
written as

Q= S
�

`3⊗`3− 1

3
I
�

+P (`1⊗`1−`2⊗`2) ,

where the additional biaxial order parameter P = 〈sin2β cos 2α〉 ranges in [−1, 1]and vanishes for uniaxial
phases. However, whenever P 6= 0 the phase is not purely uniaxial, but has a biaxial (orthorhombic)
phase symmetry: a symmetry lower than that of the molecule.

On a dual point of view, molecules endowed with a D2h symmetry are characterised by 3 main axes
instead of one; whenever only the main axes are aligned, the phase has a higher D∞h (uniaxial) sym-
metry; differently, when also the other two axes tend to align respectively in two orthogonal directions,
we obtain a phase with the same D2h (biaxial) symmetry. We omit the detail of the description in the
laboratory frame (see [14, 15, 16]), however pictures in Fig 1 show the difference of the two cases.

In general, when no symmetry for the molecule or the phase can be assumed a-priori, the orien-
tational distribution of a collection of molecules is most conveniently described in terms of a space-
dependent probability density function f (x, R). Here x is the space point of the considered molecule and
R ∈ SO(3) is the rotation of a right orthonormal frame set in the molecule, with (m1, m2, m3) unit vec-
tors along the axes, with respect to the laboratory frame of reference, identified by the three mutually
orthogonal unit vectors (`1,`2,`3). In the following we drop the explicit dependence of f on the space
point x since we are mainly interested in its orientational properties and we will assume a continuous
dependence on R. Hence, f : SO(3)→ R+ is a continuous function from the group of proper rotations
to the non-negative real numbers and, of course,

∫

SO(3) f = 1. Several equivalent description can be

given of the rotation matrix R that describes the orientation of the molecule with respect to the labora-
tory axes. The matrix R is defined as the rotation that brings each unit vector `i into coincidence with
the corresponding molecular unit vector mi : R`i =mi , i = 1, . . . , 3, and the matrix entries of R are given
by the director cosines Ri j = `i ·R` j = `i ·m j i , j = 1, . . . , 3. Equivalent but more intrinsic descriptions of
the same matrix are obtained as follows

R=
3
∑

i , j=1

Ri j `i ⊗` j , or R=
3
∑

k=1

mk ⊗`k , (3)

(cf. Sec 1.1)

1Actually, the phase we have described is a calamitic uniaxial phase. A uniaxial phase can also be discotic when m is randomly
distributed in a plane orthogonal to n, in which case “perfect” alignment would correspond to S =− 1
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(a) (b)

Figure 1: Schematic representations of (a) D∞h and (b) D2h phase-symmetries made with molecules
possessing a D2h symmetry.

It is known from group representation theory (more precisely from Peter-Weyl theorem, see for in-
stance [17, 18]) that the matrix entries of all the irreducible representations of the rotation group SO(3)
form a complete orthonormal set for the continuous functions f : SO(3) → R. Traditionally, this irre-
ducible decomposition is based on the properties of the spherical harmonic functions, as we now recall.
The space L 2(S 2) of square integrable functions over the two-dimensional unit sphere S 2 can be decom-
posed into the infinite direct sum of suitable finite-dimensional vector spaces Vj : L 2(S 2) =

⊕

j Vj , where
j is a non-negative integer. Each Vj is generated by the spherical harmonics {Yj k } of rank j and has di-
mension dim(Vj ) = 2 j +1. The irreducible representation of SO(3), given byD ( j ), is defined by assigning
the linear mapsD ( j )(R) : Vj →Vj such that for allψ ∈Vj , R ∈ SO(3)

D ( j )(R)ψ(x) =ψ(RT x) (4)

(where a superscript ‘T’ stands for transpose). The explicit expressions for this irreducible representa-
tions of SO(3) are usually known as Wigner rotation matrices [19]. Hence, f is usually expanded in terms
of Wigner rotation matrices [19, 20, 21].

2.1 Cartesian definition

However, for many purposes it is more convenient to use an equivalent definition and identify Vj with
the space of traceless symmetric tensors of rank j . In fact, also traceless symmetric tensors can be used
to form a basis for the irreducible representations of SO(3) [7, 19]. This result is known in other branches
of mathematics and physics and is sometimes called harmonic tensor decomposition [1]. The irreducible
representations are then identified with the non-singular linear maps D ( j )(g ) : Vj → Vj , defined as fol-
lows. If (v1, v2, . . . , v j ) are a set of j vectors belonging to the three dimension real vector space W ' R3,
we define the action of g ∈ SO(3) on Vj as the restriction of the diagonal action of SO(3) over the tensor
product space W ⊗ j :=W ⊗W ⊗ . . .⊗W

︸ ︷︷ ︸

j times

. Explicitly, we define

D (g )(v1⊗v2⊗ . . .⊗v j ) = g v1⊗g v2⊗ . . .⊗g v j (5)

and then extend by linearity to any tensor T ∈ W ⊗ j . The D ( j )(g ) is then obtained as the restriction of

D (g ) to Vj ⊂W ⊗ j . Peter-Weyl theorem can now be used to show that the entries
p

2 j +1 D ( j )
p m (R), form a

purely Cartesian complete orthonormal system for the continuous functions in SO(3), with respect to its
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normalised invariant (or Haar) measure (in terms of the common Euler anglesα,β ,γ, such measure is ex-
plicitly given by dµ= 1

8π2 sinβdβ dα dγ). The Fourier expansion of the probability distribution function
is 2

f (R) =
+∞
∑

j=0

(2 j +1)
2 j
∑

p ,m=0

f ( j )p m D ( j )
p m (R), (6)

where the coefficients are readily obtained via orthogonality from the integrals

f ( j )p m =

∫

SO(3)
D ( j )

p m (R) f (R) dµ(R) . (7)

When studying phase transformations, it is often useful to define an order parameter, that is a quan-
tity which changes the value on going from one phase to the other and that can therefore be used to
monitor the transition. From a molecular point of view, however, we should describe the passage from
one phase to another in terms of the modifications that this produces in the distribution function. There-
fore, a standard assumption is to identify the order parameters with the expansion coefficients (7) (see
Refs. [22, 21, 23, 24, 25, 26])

3 Second-rank order parameters

In nematic liquid crystals, the expansion of the probability distribution function is usually truncated at
j = 2. The j = 0 term represents the isotropic distribution, while the j = 1 terms vanishes for symmetry
reasons. Therefore, the first non trivial information about the molecular order is provided by the j = 2
terms which then acquire a particular important part in the theory. Higher rank terms are sometimes
also studied, but this is uniquely done in particular cases (i.e. uniaxial molecules) where simplifying
assumptions or the symmetry of the problem restrict the number of independent order parameters and
the complexity of their calculation. Surely, it is already difficult to have an insight about the physical
meaning of the j = 2 order parameters, when no particular symmetry is imposed [27, 28, 29].

Therefore, in the present paper we will only consider the second-rank order parameters, i.e. with
j = 2, although, at least formally, it is easy to extend our definitions to higher rank ordering tensors. The
invariant space V2 is described as the (five dimensional) space of symmetric and traceless second-rank
tensors3 on the three dimensional real space W 'R3. Let L (V2) be the space of the linear maps V2→V2.

Given the general definition of Cartesian ordering tensor (7), we are led to consider traceless sym-
metric tensor spaces and define second-rank ordering tensor (or order parameter tensor) as the linear
map S ∈ L (V2), such that [8, 9]

S(T) =
∫

SO(3)
D (2)(R)T f (R) dµ(R) := 〈D (2)(R)〉T, (8)

where the ( j = 2)-irreducible representation matrix D (2)(R) acts explicitly by conjugation as follows

D (2)(R)T=RTRT . (9)

It is worth noticing that the 5 × 5 matrices D (2)(R), defined by (9), yield an irreducible real orthogonal
representation of O(3) and as such they satisfy

D (2)(R)T =D (2)(RT ) =D (2)(R−1) =D (2)(R)−1. (10)

Since O(3) is the direct product of SO(3) and Ci , each representation of SO(3) splits into two representa-
tions ofO(3). However, in our application the natural generalisation of (9) to the j t h -rank tensors induces
us to choose the following representation for the inversion: D ( j )(ι) = (−1) j D ( j )(I). Hence, when j = 2, we
obtain D (2)(ι) =D (2)(I).

2Basically, this expansion is the analogue of the Fourier analysis for compact groups.
3In Elasticity theory, traceless tensors are sometimes called deviatoric tensors. Since the common second-rank tensors found

in Elasticity are symmetric, V2 is usually referred to as the ’space of deviatoric tensors’.
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It is convenient for the sake of the presentation to introduce an orthonormal basis that describes the
orientation of the molecule in the 5-dimensional space V2. It is natural to build this basis on top of the
three dimensional orthonormal frame (m1, m2, m3). Therefore, in agreement with [10, 30, 31]4, we define

M0 =

√

√3

2

�

m3⊗m3− 1

3
I
�

, M1 =
1p
2
(m1⊗m1−m2⊗m2) , (11a)

M2 =
1p
2
(m1⊗m2+m2⊗m1) , M3 =

1p
2
(m2⊗m3+m3⊗m2) , (11b)

M4 =
1p
2
(m1⊗m3+m3⊗m1) . (11c)

The tensors {M0, M1, . . . , M4} are orthonormal with respect to the standard scalar product (1).
Similarly, we define the basis of five symmetric, traceless tensors L0, . . . , L4 in terms of `1,`2,`3 that are

used as laboratory frame of reference. The matrix D (2)(R) is an irreducible representation of the rotation
R in the 5-dimensional space of symmetric traceless tensors. Specifically, it describes how the “molecular
axis” Mi of a given molecule is rotated with respect the laboratory axis:

D (2)(R)Li =Mi , i = 0, . . . , 4, (12)

to be compared with the similar expression R`i =mi (i = 1, . . . , 3) in the three-dimensional space. Like-
wise, components of D (2)(R) and Eq. (3) become

D (2)(R)i j = Li ·M j , D (2)(R) =
4
∑

i , j=0

D (2)(R)i j Li �L j , D (2)(R) =
4
∑

k=0

Mk �Lk , (13)

where i , j = 0, . . . , 4, and � stands for the tensor dyadic product (cf. Sec. 1.1, (6).)
Hence, the Cartesian components of the ordering tensor S ∈ L (V2) are defined as

Si j = Li ·S(L j ) = Li · 〈M j 〉, i , j = 0, . . . , 4, (14)

with the usual notation for the ensemble average (cf. Sec. 1.1, (11).) The components (14) give the aver-
aged molecular direction M j with respect to the laboratory axis Li . In general there are 25 independent
entries (as expected). We can alternatively write

S(Li ) = 〈Mi 〉, (i = 0, 1, . . . , 4) S=
4
∑

i , j=0

Si j Li �L j , S=
4
∑

k=0

〈Mk 〉�Lk . (15)

In simulations, the orientational probability density f (R) is reconstructed by keeping track of the orien-
tations of a large number N of sample molecules. Thus, the ensemble average in (14) is approximated
by the sample mean of M j and the components Si j are calculated as

Si j =
1

N

N
∑

α=1

Li ·M(α)
j , i , j = 0, . . . , 4, (16)

where the index α runs over all the molecules in the simulation.
As a final example, let us consider a system of uniaxial molecules with long axis m3. For symmetry

reasons, all the averages of the molecular orientational tensors M j with j 6= 0 vanish. The average of M0

yields the five components (i = 0, 1, . . . , 4)

Si ,0 =

√

√3

2
Li · 〈m3⊗m3− 1

3 I〉, (17)

which provides a description of the molecular order equivalent to the standard de Gennes Q tensor or
Saupe ordering matrix [25, 32], as given in Eq. (2).

4In Ref. [10] definitions of M3 and M4 are swapped
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3.1 Change of basis and group action

Let us investigate how the components Si j are affected by a change of the molecular or laboratory frames
of reference. We first consider the components of the ordering tensor with respect to rotated laboratory
axes. More precisely, let `′i =AP `i be the unit vectors along the primed axes, obtained from the old ones
by a (proper or improper) rotation AP . A molecule, whose orientation was described by the rotation R
with respect to (`1,`2,`3), now is oriented as RAT

P with respect to the primed frame

R`i =mi =R′`′i =R′AP `i ⇒ R′ =RAT
P .

Correspondingly, in the five-dimensional space V2, the rotation that brings the new frame {L′i } into co-
incidence with the molecular frame {Mi } is

D (2)(RAT
P ) =D (2)(R)D (2)(AP )

T , D (2)(RAT
P )L

′
i =Mi , (18)

where we have used the identities D (2)(R)Li =Mi and D (2)(AP )Li = L′i . The components of the ordering
tensor in the new basis are then calculated as follows

S ′i j = L′i · 〈M j 〉= L′i · 〈D (2)(RAT
P )〉L′j =D (2)(AP )Li · 〈D (2)(R)〉L j

=
4
∑

k=0

D (2)(AP )Li · (Lk �Lk )〈D (2)(R)〉L j =
4
∑

k=0

D (2)
i k (A

T
P )Sk j , (19)

where D (2)
i k (A

T
P ) = Lk ·D (2)(AP )Li . Since only the relative orientation of the molecular frame with respect to

the laboratory frame is important, a rigid rotation of all the molecules is equivalent to an inverse rotation
of the laboratory frame. It is easy to check that the ordering tensor in the two cases is the same. Let AM

be a common rotation to all the molecular frames, so that the new molecular axes are m′
i = AM mi . The

orientation of these axes with respect to the laboratory frame is given by AM R: AM R`i =AM mi =m′
i . The

components of the ordering tensor then becomes

S ′i j = Li · 〈M′
j 〉= Li ·D (2)(AM )〈D (2)(R)〉L j

=
4
∑

k=0

Li ·D (2)(AM )(Lk �Lk )〈D (2)(R)〉L j =
4
∑

k=0

D (2)
i k (AM )Sk j , (20)

to be compared with (19). When combined together, (19) and (20) show that only the relative rotation
AM AT

P has a physical meaning.
However, in this context a rotation of the molecular frame has to be interpreted as an orthogonal

transformation of the molecular axes before the orientational displacement of the molecule, R, has taken
place. In such a case the overall rotation that brings the laboratory axes into coincidence with the new
molecular axes is described by the product RAM . The new components of the ordering tensor are then
given by

S ′i j = Li · 〈D (2)(RAM )〉L j =
4
∑

k=0

Li · 〈D (2)(R)〉(Lk �Lk )D
(2)(AM )L j =

4
∑

k=0

Si k D (2)
k j (AM ) . (21)

When both laboratory and molecular transformations are allowed, the combination of (19) and (21)
yields

S ′i j =
4
∑

h ,k=0

D (2)
i h (A

T
P )Shk D (2)

k j (AM ) (22)

Dually, we can study the action of two groups GP ,GM ⊂O(3) on S ∈V2⊗V ∗2 by left and right multipli-
cation respectively (i.e., GP acts on the “phase index” and GM on the “molecular index”). According to
this active interpretation of the orthogonal transformations AP ∈GP and AM ∈GM , the ordering tensor is
transformed in such a way that the following diagram commutes
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V2 V2

V2V2

(AL ×AM )S

D (2)(AM ) D (2)(AP )

S

In formula, we have

(AP ×AM )S=D (2)(AP )SD (2)(AT
M ). (23)

3.2 Molecular and phase symmetry

When dealing with liquid crystals we must distinguish between the symmetry of the molecule and the
symmetry of the phase, shared by the aggregation of the molecules, but not necessarily by the molecules
themselves. A thorough description of the symmetries of a physical system is envisaged by the symme-
tries of the corresponding orientational probability density f (R). However, when we analyse the order of
the system only in terms of the descriptor S, some degeneracy arises. The ordering tensor S is an aver-
aged quantity obtained by computing the second moments of f (R). It is therefore possible that systems
possessing different physical symmetries may be described by the same ordering tensor, since in the
averaging procedure some information may be lost. This means that to be able to distinguish the fine
details of these degenerate cases we need to carry on the expansion of f (R) to higher orders. Here, we
mainly focus on second-rank properties and we first define what we mean by symmetry group of S.

According to the action (23), we define the second-rank molecular symmetry group as the set of all
elements in O(3) that fix S under right multiplication 5

GM (S) = {AM ∈O(3) : SD (2)(AT
M ) = S}, (24)

and similarly for the second-rank phase symmetry group, where the multiplication appears on the left

GP (S) = {AP ∈O(3) : D (2)(AP )S= S}. (25)

We also refer to these subgroups as the right and left stabiliser subgroup for S. A second-rank symmetry
group or stabiliser subgroup is then defined as the subgroup of O(3)×O(3) that collects all the orthogonal
transformations, both in the phase and in the molecule, that leave S invariant (see [1] for the correspond-
ing definition in the context of Elasticity Theory). Mathematically, this is the direct product of GP and
GM : G (S) =GP (S)×GM (S).

The definition of symmetry group explicitly contains the information about the symmetry axes of the
molecule and the phase. However, our main interest in this Section lies in classifying second-rank order-
ing tensors with respect to their symmetry properties. This means that we wish to introduce, among such
tensors, a relation based on the idea that different materials which can be rotated so that their symmetry
groups become identical are ‘equivalent’. For instance, two uniaxially aligned liquid crystals are viewed
as equivalent in this respect even if the direction of alignment of the molecules may be different in the
two compounds. Therefore, it is quite natural to think of ordering tensors lying on the same SO(3)–orbit
as describing the same material albeit possibly with respect to rotated directions. As a consequence of
the definition of the stabilisers GM (S) and GP (S), the symmetry groups with respect to a rotated frame of
reference are simply obtained by conjugation. For example, if RP ∈ SO(3) is a rotation of the laboratory
axes, the new ordering tensor is D (2)(RP )S and the new symmetry group is conjugated through D (2)(RP )
to GP (S)

GP

�

D (2)(RP )S
�

= {AP ∈O(3) : D (2)(AP )D
(2)(RP )S=D (2)(RP )S}

= {AP ∈O(3) : D (2)(RP )
TD (2)(AP )D

(2)(RP )S= S}
=D (2)(RP )GP (S)D (2)(RP )

T . (26)

5Some authors, especially in the mathematical literature, use the term isotropy group. Here we prefer to adopt the term symmetry
group or stabiliser to avoid confusion with the term “isotropy” as used, e.g., for the isotropic phase, which is a totally different thing.

9



We regard two ordering tensors S1 and S2 which are related by a rotation of the axes as representing
the same material and hence equivalent. Thus, we speak about (second-rank) symmetry classes and say
that the two ordering tensors belong to the same symmetry class (and are therefore equivalent) when
their stabiliser subgroups are conjugate. More precisely, we write S1 ∼ S2 if and only if there exist two
rotations RP , RM ∈ SO(3) such that

D (2)(RP )GP (S1)D
(2)(RP )

T =GP (S2) and D (2)(RM )GM (S1)D
(2)(RM )

T =GM (S2). (27)

Finally, we note that the symmetry of the ordering tensor may not be shared by the physical system,
i.e., by the probability density6 f (R). To this end, it is important to find those symmetries of the physical
system that collapse into the same stabiliser at the second-rank level. We say that G1 and G2 are second-
rank indistinguishable if whenever S1 ∈ L (V2) is fixed by G1 and S2 ∈ L (V2) is fixed by G2 then S1, S2 have
conjugate stabilizers (S1 ∼ S2).

3.3 Symmetry classes of second-rank ordering tensors

A preliminary problem which we need to address is counting and determining all symmetry classes for
second-rank ordering tensors. An analogous problem in Elasticity, i.e., determining the symmetry classes
of the linear elasticity tensor, is discussed in [1]. However, as we shall see, in our case this determination
is simpler because we are dealing with irreducible second-rank tensors (instead of reducible fourth-rank);
furthermore, the action of molecular and phase symmetry can be studied separately, as any symmetry
group G we consider is the direct product GP ×GM , i.e. phase and molecule group symmetries (‘left’ and
‘right’ actions in Eq. 22). The two results will be combined in a synthetic table taking into account both
actions.

It is worth remarking that there is not a one to one correspondence between the stabiliser subgroups
for S and the point groups in three dimensions: liquid crystal compounds possessing different (molec-
ular or phase) physical symmetry may have the same stabiliser for S and thus may belong to the same
second-rank symmetry class. This fact is related to the truncation of the probability density used to de-
fine the order parameters: at the second-rank level the ordering tensors may coincide even if the actual
material symmetry is different as in the truncation process some information about the molecular distri-
bution is lost. For example, at the second rank level, materials with C3h and D∞h symmetry are effectively
indistinguishable. This would not be true if we considered third-rank tensorial properties. However, for
the sake of simplicity and also because it is most widely adopted in the literature, we will consider only
second-rank order parameters.

A number of authors have made the same classification based on the number of non-vanishing in-
dependent order parameters for each group [23, 24, 25, 33]. However, in our view, this classification of
the symmetry classes rests on two standard theorems, which we now state without proof. The first theo-
rem is known as Hermann’s theorem or Herman’s theorem in Crystallography. The interested reader can
consult the original references [34, 35]; Refs. [3, 36] for a proof and Refs. [4, 37, 38] for a more accessible
account of this result.

Theorem 3.1 (Hermann-Herman). Let T be an r -rank (r > 0) tensor in W ⊗ r , where W is a 3-dimensional
real vector space. If T is invariant with respect to the group Cn of n-fold rotations about a fixed axis and
n > r , then it is C∞-invariant relative to this axis (i.e., it is Cm -invariant for all m ≥ n).

Quoting Herman, from [3, 35] “If the medium has a rotation axis of symmetry Cn of order n , it is
axially isotropic relative to this axis for all the physical properties defined by the tensors of the rank r =
0, 1, 2, . . . , (n −1).”

To perform the classification of the second-rank symmetry classes, we also need to recall a standard
classification theorem in Group Theory [1, 18, 39].

Theorem 3.2. Every closed subgroup of SO(3) is isomorphic to exactly one of the following groups (n ≥ 2):
C1, Cn , Dn , T , O , I , C∞, C∞v , SO(3).

6Since the symmetry group is in general a subgroup of O(3), a correct analysis of the symmetries for the probability density
function would require f to be defined in O(3). This point is discussed in the Appendix, to avoid diverting here from the main
discourse.
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In view of these theorems, for j = 2 we obtain a result that allows collecting all point groups in five
classes, which greatly simplifies the classification of phase or molecular symmetries. A general theorem
containing a complete classification for the representations of rank j can be found in Ref.[40].

Proposition 3.1. There are exactly five (phase or molecular) symmetry-classes of the second-rank ordering
tensor: Isotropic, Uniaxial (Transverse Isotropic), Orthorhombic, Monoclinic and Triclinic. The corre-
sponding stabiliser subgroups for S are: O (3), D∞h , D2h , C2h and Ci . The last column in the table collects
the second-rank indistinguishable symmetries, i.e., physical symmetries that yield equivalent second-rank
ordering tensors.

Class Stabiliser for S Indistinguishable symm.

Triclinic

Monoclinic

Orthorhombic

Uniaxial

Isotropic

Ci

C2h

D2h

D∞h

O(3)

C1, Ci

C2, Cs , C2h

C2v , D2, D2h

Cn , Cnh , Cn v , Dn , Dnh (n ≥ 3)
Sn (n ≥ 4), Dnd (n ≥ 2)

T , Th , Td , O , Oh , I , Ih

SO(3), O(3)

C4

C3

C2

C1

C0

Furthermore, since S vanishes in the isotropic class, there are only 4× 4+ 1 = 17 possible different com-
binations of molecular and phase symmetries that can be distinguished at the level of second-rank order
parameters.

Proof. The proof is a consequence of the following remarks.

(1) Since the symmetry group G is the direct product of GM and GP , the action of a symmetry trans-
formation can be studied independently for the molecules and the phase. This greatly simplify the
classification (by contrast, this fact is not true in Elasticity).

(2) The definition of D (2)(R), as given in (9), involves exactly twice the product of the rotation matrix
R. This implies, by Herman’s theorem, that all the groups with an n-fold rotation axis with n > 2
are effectively indistinguishable from the C∞-symmetry about that axis.

(3) Furthermore, Eq.(9) shows immediately that D (2)(ιR) = D (2)(R). In particular, this yields D (2)(ι) =
D (2)(I), D (2)(σh ) =D (2)(C2z ), and D (2)(σv ) =D (2)(C2x ) so that the inversion and the identity are rep-
resented by the same matrix; a horizontal mirror reflection is equivalent to a 2-fold rotation about
the main axis z , and a vertical mirror reflection is equivalent to a 2-fold rotation about an orthogo-
nal axis x . Therefore, the classification can be first performed on the subgroups ofSO(3) since each
class will have at least one representative subgroup in SO(3). The indistinguishable subgroups of
O(3) are then classified by considering the trivial actions of ι orσh .

(4) Whenever a point group has two independent rotation axes of order n > 2, it must contain two
distinct copies of C∞. By checking the list of the possible closed subgroups of SO(3) (theorem 3.2)
we see that it must be the whole SO(3).

(5) Finally, the stabiliser of S in each class is determined by the largest group in the class.

The proof is then completed by inspection of the various point groups. For example, point (4)
immediately shows that the higher order groups T , O and I are all indistinguishable from SO(3)
and thus they all belong to the same class. Then, from point (3) we learn that adding an inversion
or a mirror reflection has no effect on S. Hence we can also classify Ih Th , Td , Oh , and O(3) as
belonging to the same class (called isotropic). The stabiliser for S is the largest among such groups
and it is O(3).

Likewise, axial groups with a 3-fold or higher rotation axis are to be placed in the same class of
C∞ = SO(2), according to the remark in point (2). We now choose a frame of reference with the
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rotation axis along the z coordinate and use the basis {Li }, as given in Eq.(11), to represent S. The
only basis tensor that is fixed by an arbitrary rotation about the z -axis is L0. Therefore, in this basis
a C∞-invariant Smust be written either as

S=
4
∑

i=0

Si ,0Li �L0, or S=
4
∑

j=0

S0, j L0�L j ,

depending on whether C∞ is acting on the right or the left. The only non-vanishing entries are
either the first column or the first row of the matrix representing S (see also Table 1). Since the
tensor L0 is not affected by a mirror reflection across planes through the z -axis, or by a C2 rotation
about the x -axis, the ordering tensor S is (right- or left-) fixed also by σv and C2x . This brings
C∞v =O(2) and D∞h into the class. From these it is then easy to classify all the other groups in the
uniaxial class.

By contrast, the orthorhombic class and the monoclinic class are only composed by groups with
2-fold rotation axes, so that Theorem 3.1 does not apply. The two classes are distinguished by the
presence or absence of a second rotation axis orthogonal to z and point (3) allows us to identify the
indistinguishable subgroups in each class. Finally, the triclinic class collects the remaining trivial
groups C1 and Ci . All the symmetry classes are disjoint since it is possible to provide independent
examples of an ordering tensor in each class.

4 Identification of the nearest symmetric ordering tensor

4.1 Invariant projection

If GM ,GP ⊂O(3) represent the real symmetry of the material, the order parameter Smust be an invariant
tensor for the action of GP ×GM . However, in practice, S will not be fixed exactly by any non-trivial
group, due to measurements errors or non perfect symmetry of the real system. Therefore, our problem
can be stated as follows: given a measured 5 × 5 ordering tensor S and assuming two specific stabiliser
subgroups GM ,GP , find the ordering tensor Ssym which is (GP ×GM )–invariant and is closest to S. We now
discuss two related sub-problems, namely, (1) how to find Ssym and (2) what is meant by “closest to S”.

Let us define the fixed point subspace L (V2)G as the space of the tensors S that are fixed under G :

L (V2)
G = {S ∈ L (V2) : g S= S,∀g ∈G }. (28)

The invariant projection onto L (V2)GP×GM can be easily obtained by averaging over the group

Ssym =
1

|GP ||GM |
∑

AP ∈GP

∑

AM ∈GM

D (2)(AP )SD (2)(AT
M ), (29)

where |GP | and |GM | are the orders of the two (finite) groups. We observe that the transposition of AM

in Eq. (29) is unnecessary since we are summing over the whole group, but it is maintained here for
consistency with (23). This averaging procedure is standard in many contexts and takes different names
accordingly. It is called “averaging over the group” in Physics, “projection on the identity representation”
in Group Theory and “Reynolds operator” in Commutative Algebra. The expression (29) is manifestly
invariant by construction. It is also easy to show that it constitutes an orthogonal projection, with respect
to the standard Frobenius inner product, i.e., the natural extension of Eq.(1) to L (V2). Hence, the distance
of Ssym from the original S is minimal and can be easily computed, as we now discuss.

Lemma 4.1. The Reynolds operator as given in (29), with GM ,GP ⊂O(3), is an orthogonal projector onto
L (V2)GP×GM

Proof. Let us introduce the linear operatorR such thatR(S) = Ssym as given in Eq. (29). For convenience,
we will use the following more compact notation for the Reynolds operator:

R(S) = 1

|G |
∑

g∈G

g S,
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where G is the direct product of groups G =GP×GM and g =D (2)(AP )⊗D (2)(AM ) is the tensor (Kronecker)
product of the matrix representation. First, we observe that by constructionR2 =R as we are summing
over the whole group.

Next, we show thatRT =R . Since GM ,GP ⊂ O(3), it follows from (10) that g −1 = g T . Therefore, for
any two ordering tensors S,T ∈ L (V2), we have

R(T) ·S= 1

|G |
∑

g∈G

gT ·S= 1

|G |
∑

g∈G

T · g TS= 1

|G |
∑

g∈G

T · g −1S= 1

|G |
∑

g∈G

T · g S=T ·R(S), (30)

where we have used the fact that summing over g −1 is the same as summing over g , since G is a group.
Finally, we define S⊥ := S−R(S) and obtain

R(S) ·S⊥ =R(S) · �S−R(S)�=R(S) ·S−R(S) ·R(S) =R(S) ·S−R2(S) ·S= 0. (31)

The above lemma suggests that the Frobenius norm ‖S⊥‖ is a suitable candidate for the “distance
from the G -invariant subspace”. It is worth noticing explicitly that this distance is properly defined as its
calculation does not depend on the particular chosen matrix representation of S, i.e., on the molecular
and laboratory axes. Furthermore, since by orthogonality we have ‖S‖2 = ‖Ssym‖2 + ‖S⊥‖2, we readily
obtain the following expression for the distance

d(S, L (V2)
GP×GM ) = ‖S⊥‖=

Ç

‖S‖2−‖Ssym‖2. (32)

4.2 Canonical matrix representation

The matrix representation of the ordering tensor S assumes a particular simple form when the molecule
and the laboratory axes are chosen in accordance with the molecular and phase symmetry, respectively.
When the z -axis is assumed to be the main axis of symmetry and the basis tensors Mi and L j are chosen
accordingly, the projection (29) gives a “canonical” form for the ordering tensor, shown explicitly in Ta-
ble 1. The number of non-vanishing entries in each matrix corresponds to the number of independent
(second-rank) order parameters necessary to describe the orientational order of molecules of the given
symmetry in a given phase. The same results can be obtained by direct computation using the invari-
ance of each matrix entry by symmetry transformations (see for example the calculations at the end of
[10] relative to a nematic biaxial liquid crystal).

We immediately read from Eq. (17) that

S00 = L0 · 〈M0〉= `3 ·
�

3

2



m3⊗m3− 1

3
I
·�

`3 =
1

2




3(`3 ·m3)
2−1

�

= S , (33)

where S is the standard uniaxial (D∞h ) order parameter (degree of orientation). This is due to the fact
that m3 is the main rotation axis of the molecule and we have chosen the laboratory axis `3 along the uni-
axial symmetry axis of the phase (see Sec. 2). Likewise, we can see that when the frames of reference are
adapted to the molecular and phase symmetries of the system, S10 corresponds to the degree of phase bi-
axiality P while S01 and S11 are the two additional nematic biaxial (D2h ) order parameters, usually written
as D and C (see [10] for notations)7.

However, some ambiguity arises from this definition because in low symmetry groups not all the
axes are uniquely defined by the group operations. This, in a sense, suggests that, contrary to common
understanding, the matrix entries of S are not suitable candidates for the order parameters, but rather
the ordering tensor S as a whole should be considered as the correct descriptor of the molecular order
in a low symmetry system. For example, while the D2h symmetry uniquely identifies three orthogonal
directions that can be used as coordinate axes, the C2h symmetry only identifies the rotation axis z , but
gives no indication on how to identify the coordinate axes x and y . We note that this choice is important,
because some matrix entries are altered when we choose different x and y axes. By contrast, in a system
with D∞h symmetry the choice of the x and y axes is not important as all the associated order parameters

7NB: In our notation Si j = Li · 〈M j 〉 (see (14)), whilst in [10] Si j = 〈Mi 〉 ·L j .
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PPPPPMol.
Phase

Triclinic Monoclinic Orthorhombic Uniaxial

Triclinic











S00 S01 S02 S03 S04

S10 S11 S12 S13 S14

S20 S21 S22 S23 S24

S30 S31 S32 S33 S34

S40 S41 S42 S43 S44





















S00 S01 S02 S03 S04

S10 S11 S12 S13 S14

S20 S21 S22 S23 S24

· · · · ·
· · · · ·





















S00 S01 S02 S03 S04

S10 S11 S12 S13 S14

· · · · ·
· · · · ·
· · · · ·





















S00 S01 S02 S03 S04

· · · · ·
· · · · ·
· · · · ·
· · · · ·











Monoclinic











S00 S01 S02 · ·
S10 S11 S12 · ·
S20 S21 S22 · ·
S30 S31 S32 · ·
S40 S41 S42 · ·





















S00 S01 S02 · ·
S10 S11 S12 · ·
S20 S21 S22 · ·
· · · · ·
· · · · ·





















S00 S01 S02 · ·
S10 S11 S12 · ·
· · · · ·
· · · · ·
· · · · ·





















S00 S01 S02 · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·











Orthorhombic











S00 S01 · · ·
S10 S11 · · ·
S20 S21 · · ·
S30 S31 · · ·
S40 S41 · · ·





















S00 S01 · · ·
S10 S11 · · ·
S20 S21 · · ·
· · · · ·
· · · · ·





















S00 S01 · · ·
S10 S11 · · ·
· · · · ·
· · · · ·
· · · · ·





















S00 S01 · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·











Uniaxial











S00 · · · ·
S10 · · · ·
S20 · · · ·
S30 · · · ·
S40 · · · ·





















S00 · · · ·
S10 · · · ·
S20 · · · ·
· · · · ·
· · · · ·





















S00 · · · ·
S10 · · · ·
· · · · ·
· · · · ·
· · · · ·





















S00 · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·











Table 1: Canonical form of Ssym obtained by the projection of a generic ordering tensor S using Eq.(29). The basis
tensors Mi and L j , as given in (11), are adapted to the molecular and phase symmetries, where the z -axis is the main
axis of symmetry. For the sake of readability, dots stand for vanishing entries. The isotropic class is omitted since
the entries of the corresponding ordering tensors all vanish.

vanish by symmetry. An extreme example is furnished by the triclinic case, where the molecule and the
phase posses no symmetry. Here, there is no reason to select one preferred direction with respect to any
other and any coordinate frame should be equivalent. However, the matrix entries of S surely depend on
the chosen axis.

Therefore, in general, a different choice of the x and y axes could lead to different values for the matrix
entries and the canonical form of the matrix S is thus not uniquely defined. By contrast, the structure of
the matrix as given in Table 1, and in particular the position of the vanishing entries of S, are not affected
by such a change of basis. This suggests that the order parameters should not be identified with the
matrix entries, but rather with the invariants of S.

Finally, it is important to observe that the molecular and phase symmetries are uniquely identified
once we recognise the structure of the canonical form, independently of the definition of the order pa-
rameters.

Proposition 4.1. An ordering tensor S is fixed by any group in the symmetry classC(p ,m ) =Cp ×Cm if and
only if there exist molecular and laboratory frames of reference such that the matrix representation of S
has a canonical form given by the entry (p , m ) of Table 1.

Proof. This can be checked by direct computation. The canonical forms in Table 1 are obtained by pro-
jection of a full matrixSonto the fixed point subspace L (V2)GP×GM using the Reynolds operator (29), where
GP and GM are any two of the indistinguishable subgroups in the given symmetry class. The molecular
and laboratory z axes are assumed to be the main axes of symmetry. Let R(p ,m ) be the corresponding
Reynolds operator.
If S is fixed by GP ×GM , thenR(p ,m )(S) = S. By construction, Smust be equal to the canonical form, once
we choose the molecular frame and the laboratory frame in accordance with the symmetry axes of GP

and GM .
Vice versa, if S is in a canonical form (p , m ), then we can check directly that it is invariant for the appli-
cation ofR(p ,m ) for a suitable choice of the symmetry axes.
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4.3 Determining the effective phase

In order to determine the phase of the system it is not necessary to identify the scalar order parameters
suitable to describe the molecular order in each case. As discussed in the previous section, it is sufficient
to study whether the ordering tensor S is close to one of the canonical forms of Table 1, for a suitable
choice of the molecular and laboratory axis.

To evaluate the distance of S from a given fixed point subspace, we choose any group in the corre-
sponding class and describe its elements concretely by assigning the orthogonal transformations and
assuming the rotation axes. However, the rotation axes are not in general known (and are indeed part
of the sought solution). Therefore, we calculate the distance with respect to all of the possible direc-
tions of the symmetry axes and define the distance from the symmetry class as the minimum among the
distances.

It is useful to define the coefficient of discrepancy [6] as the minimum relative distance of S from a
symmetry class

c (p , m ) =min

�

d (S, L (V2)G )
‖S‖ : G =GP ×GM ∈C(p ,m )

�

. (34)

When the molecular symmetry is known, say GM , we perform the optimisation only with respect to the
phase groups and the coefficient of discrepancy depends only on the phase-index

c (p ) =min

�

d (S, L (V2)G×GM )
‖S‖ : G =GP ∈Cp

�

. (35)

The algorithm we propose is described schematically as follows (we specifically concentrate on the
phase symmetry as the molecular symmetry can usually be assumed to be known a-priori).

(1) If ‖S‖= 0, then the phase is isotropic.

(2) If ‖S‖ 6= 0, then loop over the phase symmetry classes for p=1,2,3 (there is no need to minimise
in the trivial classC4).

(2.1) Choose the lowest order group inCp . Select an abstract group GP in the chosen class. This is
reasonably the one with lowest order.

(2.2) Minimisation step. The distance (32) depends, via the Reynolds operator (29), on the con-
crete realisation of GP , i.e., on the direction of the symmetry axes. Therefore we need to minimise
the distance (32) with respect to all possible directions of the rotation axes allowed by the specific
abstract group.

(3) Selection step. Clearly, the correct symmetry class is not that of the lowest distance. For instance,
any ordering tensor S has a vanishing distance with respect to the triclinic class (absence of sym-
metry). As a second example, since the lattice of the stabiliser subgroups is composed by a single
chain, an uniaxial ordering tensor has zero distance also from all the previous classes in the chain,
i.e. orthorhombic, monoclinic and triclinic.
In principle, when S is free from numerical errors, we should choose the class with the highest
symmetry and vanishing coefficient of discrepancy. However, in practice we will choose the high-
est symmetry compatible with a coefficient of discrepancy (35) not exceeding the experimental
error (or simulation error).

5 Examples

We now briefly describe how to apply our algorithm to determine the phase symmetry of two liquid
crystal compounds, one composed of uniaxial (D∞h ) molecules and the other made of biaxial (D2h )
molecules. These symmetry assumptions are quite standard and shared by most theoretical studies in
the field (see for example [27, 28, 29, 14, 15, 16, 41]). In the following we assume (quite reasonably) that
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the molecular symmetry and the molecular axes are known a-priori, as is the case of Monte Carlo simula-
tions or mean-field analysis. Therefore, no minimisation is required with respect to the molecular frame
of reference. Rather, we concentrate on the determination of the phase symmetry and its principal axes.

In the examples that follow, we have produced possible outcomes of simulations by computing S for
a system composed of a large number of molecules. We have randomly perturbed their initial perfect
uniaxial or biaxial order to simulate more realistic results, affected by noise.

5.1 Uniaxial phase

First, let us consider a uniaxial phase with symmetry axis determined by the Euler anglesα= 60◦,β = 30◦,
γ = 0. After introducing a random perturbation, the degree of order is S = S00 ≈ 0.69, and the following
ordering matrix is obtained:

S=











0.404 −0.016 0.005 −0.013 −0.005
−0.090 −0.008 −0.005 0.016 −0.009
0.122 0.006 −0.009 −0.004 −0.012
0.476 0.009 −0.005 0.000 0.020
0.234 −0.007 −0.014 −0.011 0.010











, (36)

written with respect to an arbitrarily chosen laboratory frame, but with the molecular frame accurately
selected according to the molecular symmetry. A quick look at Table 1 correctly suggests that S refers
to a system of uniaxial molecules, although affected by experimental or numerical errors (only the first
column contains significantly non-vanishing entries). However, the symmetry class of the phase, the
axes of symmetry and the relevant order parameter(s) are yet unknown. To this end, we project S on
each symmetry class and compute the coefficient of discrepancy (35) in each case. It is unnecessary to
project on the triclinic class since by definition this includes all the possible ordering tensors and the
distance (32) is therefore always zero.

The optimal choice for the symmetry axes is given by minimising the distance of S from each sym-
metry class. We implement this minimisation procedure rather naively by uniformly sampling SO(3),
i.e., we generate N = 104 orientations of the laboratory axes uniformly. There are of course more refined
optimisation algorithms that could yield far better results, but these fall outside the scope of the present
paper. We intend to study this computational issue more deeply in a subsequent paper. The result of our
analysis is summarised in the following table

p 0 1 2 3 4

c (p ) 1 0.063 0.056 0.049 0

The coefficients of discrepancy suggest that the phase is uniaxial and S ∈C1. The Euler angles of the
phase axes are then found to be α ≈ 63.9◦, β ≈ 31.1◦, γ ≈ 124◦. Note that the value of the proper rota-
tion angle, γ, is irrelevant in a uniaxial phase. Finally, we can write the ordering tensor in the symmetry
adapted frame of reference according to (22). The new ordering matrix S′ reads

S′ =











0.684 −0.003 −0.006 −0.014 0.013
0.006 0.001 −0.004 0.018 −0.007
−0.008 0.003 0.001 −0.007 −0.018
−0.003 −0.021 0.001 −0.004 −0.014
−0.005 −0.002 0.017 0.001 −0.001











(37)

from which we obtain a degree of order ≈ 0.684 in agreement with the expected value of 0.69.
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5.2 Biaxial phase

We now present an analogous analysis, but relative to a less symmetric phase, namely D2h . The ordering
matrix we consider in this example is

S=











0.301 −0.115 −0.003 0.004 −0.001
0.127 −0.537 0.007 0.000 0.002
0.131 −0.354 0.006 0.000 −0.003
0.403 −0.303 0.003 0.001 0.004
0.118 0.255 0.000 0.004 −0.001











(38)

which is built to represent a biaxial phase with symmetry axes rotated by α = 60◦, β = 30◦, γ = 45◦ with
respect to the laboratory axes. The order parameters, i.e. the ordering matrix entries when referred to
its principal axes, are S00 ≈ 0.507, S01 ≈ −0.179, S10 ≈ −0.201, S11 ≈ 0.743. In more standard notation,
these order parameters correspond respectively to S , D , P and C , albeit with different normalisation
coefficients.

We sample the orientations of the laboratory frame uniformly, and find the following discrepancy
coefficients for the five symmetry classes

p 0 1 2 3 4

c (p ) 1 0.43 0.070 0.017 0

The projection on the Orthorhombic class, yields α≈ 60.7◦, β ≈ 29.7◦ and γ≈ 43.6◦. The reconstruc-
tion of the ordering matrix with respect to its principal axes reads

S′ =











0.505 −0.181 0.000 0.005 0.001
−0.204 0.742 −0.009 0.001 −0.002

0.06 0.028 0.000 0.000 0.005
−0.005 −0.005 −0.005 −0.001 0.001
0.000 0.000 0.001 −0.003 0.002











. (39)

6 Conclusions

We have proposed a method able to provide the canonical form of an ordering tensors S. This canonical
representation readily yields the order parameters, i.e., the scalar quantities that are usually adopted to
describe the order in a liquid crystal compound. However, the physical meaning of the matrix entries (for
low symmetry molecules and phases) is still a matter of debate and fall outside the scope of our paper.
The laboratory axes of the canonical form are interpreted as “directors” and provide the directions of the
symmetry axes, if there are any. Finally, we have shown that there are only five possible phase symmetry-
classes, when the orientational probability density function is truncated at the second-rank level. This
is a standard approximation in many theoretical studies of uniaxial and biaxial liquid crystals.

Our proposed method is simple enough to be applicable to the analysis of real situations. For the
examples considered in Sec. 5 the proposed algorithm seems to be reliable and give a fast analysis of the
ordering tensor that leads to the correct identification of a uniaxial and a biaxial phase in a model system.
For this purpose it has been sufficient to implement a very simple Monte-Carlo optimisation procedure.
However, it may be appropriate to develop more efficient methods in case of more complex real systems.

Our strategy, based on the second-rank ordering tensor, is not able to distinguish amongst the phase
groups belonging to the same class. In principle our approach could be easily extended to include higher-
rank ordering tensors. The same mathematical ideas and tools we have put forward could be applied
to this more general case, only at the cost of more involved notations. However, we believe that in so
doing the presentation and the readability of the paper could be seriously affected. Furthermore, the
second-rank case is the most relevant from a physical perspective, since most tensorial properties that
can be measured in liquid crystals are second-rank. For these reasons we have only given the detailed
presentation in the case of a second-rank ordering tensor.
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A Appendix: orientational probability densities in O(3)

When dealing with the orientation of molecules in the physical space, it is natural choose the molec-
ular and laboratory frames of reference with the same handedness. The orientation of a molecule is
then assigned in terms of the rotation R ∈ SO(3) that brings the laboratory axes into coincidence with
the molecular axes. In this respect, an inversion or a mirror reflection do not represent a change of the
orientation of the molecule and the orientational probability density function is usually taken to be a
function f : SO(3)→R+.

However, when we need to consider how the symmetry groups acts on the orientational distribu-
tion, for instance because we need to exploit the mirror symmetry of a molecule, we need to consider
probability densities g :O(3)→R+. The two pictures can be reconciled as follows.

Since O(3) = SO(3)×Ci is composed of two connected components, that is SO(3) and the other ob-
tained fromSO(3)by inversion, the integration overO(3) separates into two integrals overSO(3). Namely,
the ensemble average of a function χ :O(3)→R is

〈χ〉O(3) =
∫

SO(3)
χ(R)g (R) dµ(R) +

∫

SO(3)
χ(Rι)g (Rι) dµ(R). (40)

For apolar molecules, which posses inversion symmetry, g (R) = g (Rι). The compatibility of the dis-
tributions in SO(3) requires

g (R) = 1
2 f (R), for all R ∈ SO(3), (41)

where f (R) is the distribution function in SO(3) that we have defined in the text and the factor 1/2 comes
from the normalisation of the distributions. The ensemble average (40) then becomes

〈χ〉O(3) =
∫

SO(3)

1
2

�

χ(R) +χ(Rι)
�

g (R) dµ(R). (42)

This equation shows that the order parameter tensors are again calculated as averages over SO(3). Ex-
plicitly, we have

〈D ( j )〉O(3) =
∫

SO(3)

1
2

�

D ( j )(R) + (−1) j D ( j )(R)
�

g (R) dµ(R). (43)

where we have used
D ( j )(Rι) = (−1) j D ( j )(R), (44)

an identity that follows from the generalisation of Eq. (9) to j th-rank tensors (see Eq.(5)). In particu-
lar, this shows that the order parameters for apolar molecules vanish if j is odd, the second rank order
parameter S considered in the text clearly do not vanish since j is even.

By contrast, for polar molecules, which do not posses inversion symmetry, it is not possible (if the
system is homogeneous, of the same chirality) to find an inverted molecule. Therefore, g (Rι) = 0, for all
R ∈ SO(3) and the probability density g (R) coincides with the f (R) in SO(3).
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