43 research outputs found

    Characterization of the effect of sample quality on high density oligonucleotide microarray data using progressively degraded rat liver RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interpretability of microarray data can be affected by sample quality. To systematically explore how RNA quality affects microarray assay performance, a set of rat liver RNA samples with a progressive change in RNA integrity was generated by thawing frozen tissue or by <it>ex vivo </it>incubation of fresh tissue over a time course.</p> <p>Results</p> <p>Incubation of tissue at 37°C for several hours had little effect on RNA integrity, but did induce changes in the transcript levels of stress response genes and immune cell markers. In contrast, thawing of tissue led to a rapid loss of RNA integrity. Probe sets identified as most sensitive to RNA degradation tended to be located more than 1000 nucleotides upstream of their transcription termini, similar to the positioning of control probe sets used to assess sample quality on Affymetrix GeneChip<sup>® </sup>arrays. Samples with RNA integrity numbers less than or equal to 7 showed a significant increase in false positives relative to undegraded liver RNA and a reduction in the detection of true positives among probe sets most sensitive to sample integrity for <it>in silico </it>modeled changes of 1.5-, 2-, and 4-fold.</p> <p>Conclusion</p> <p>Although moderate levels of RNA degradation are tolerated by microarrays with 3'-biased probe selection designs, in this study we identify a threshold beyond which decreased specificity and sensitivity can be observed that closely correlates with average target length. These results highlight the value of annotating microarray data with metrics that capture important aspects of sample quality.</p

    Overlay Tool© for aCGHViewer©: An Analysis Module Built for aCGHViewer© used to Perform Comparisons of Data Derived from Different Microarray Platforms

    Get PDF
    The Overlay Tool© has been developed to combine high throughput data derived from various microarray platforms. This tool analyzes high-resolution correlations between gene expression changes and either copy number abnormalities (CNAs) or loss of heterozygosity events detected using array comparative genomic hybridization (aCGH). Using an overlay analysis which is designed to be performed using data from multiple microarray platforms on a single biological sample, the Overlay Tool© identifies potentially important genes whose expression profiles are changed as a result of losses, gains and amplifications in the cancer genome. In addition, the Overlay Tool© will incorporate loss of heterozygosity (LOH) probability data into this overlay procedure. To facilitate this analysis, we developed an application which computationally combines two or more high throughput datasets (e.g. aCGH/expression) into a single categorized dataset for visualization and interrogation using a gene-centric approach. As such, data from virtually any microarray platform can be incorporated without the need to remap entire datasets individually. The resultant categorized (overlay) data set can be conveniently viewed using our in-house visualization tool, aCGHViewer© (Shankar et al. 2006), which serves as a conduit to public databases such as UCSC and NCBI, to rapidly investigate genes of interest

    DNA Copy Number Analysis in Gastrointestinal Stromal Tumors Using Gene Expression Microarrays

    Get PDF
    We report a method, Expression-Microarray Copy Number Analysis (ECNA) for the detection of copy number changes using Affymetrix Human Genome U133 Plus 2.0 arrays, starting with as little as 5 ng input genomic DNA. An analytical approach was developed using DNA isolated from cell lines containing various X-chromosome numbers, and validated with DNA from cell lines with defined deletions and amplifications in other chromosomal locations. We applied this method to examine the copy number changes in DNA from 5 frozen gastrointestinal stromal tumors (GIST). We detected known copy number aberrations consistent with previously published results using conventional or BAC-array CGH, as well as novel changes in GIST tumors. These changes were concordant with results from Affymetrix 100K human SNP mapping arrays. Gene expression data for these GIST samples had previously been generated on U133A arrays, allowing us to explore correlations between chromosomal copy number and RNA expression levels. One of the novel aberrations identified in the GIST samples, a previously unreported gain on 1q21.1 containing the PEX11B gene, was confirmed in this study by FISH and was also shown to have significant differences in expression pattern when compared to a control sample. In summary, we have demonstrated the use of gene expression microarrays for the detection of genomic copy number aberrations in tumor samples. This method may be used to study copy number changes in other species for which RNA expression arrays are available, e.g. other mammals, plants, etc., and for which SNPs have not yet been mapped

    Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array

    Get PDF
    BACKGROUND: Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST) that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. RESULTS: We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported) transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic predictions of alternative splicing in cancer. CONCLUSION: Differential expression of high confidence transcripts correlated extremely well with known cancer genes and pathways, suggesting that the more speculative transcripts, largely based solely on computational prediction and mostly with no previous annotation, might be novel targets in colon cancer. Five of the identified splicing events affect mediators of cytoskeletal organization (ACTN1, VCL, CALD1, CTTN, TPM1), two affect extracellular matrix proteins (FN1, COL6A3) and another participates in integrin signaling (SLC3A2). Altogether they form a pattern of colon-cancer specific alterations that may particularly impact cell motility

    The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies

    Get PDF
    Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity

    Use of a mixed tissue RNA design for performance assessments on multiple microarray formats

    Get PDF
    The comparability and reliability of data generated using microarray technology would be enhanced by use of a common set of standards that allow accuracy, reproducibility and dynamic range assessments on multiple formats. We designed and tested a complex biological reagent for performance measurements on three commercial oligonucleotide array formats that differ in probe design and signal measurement methodology. The reagent is a set of two mixtures with different proportions of RNA for each of four rat tissues (brain, liver, kidney and testes). The design provides four known ratio measurements of >200 reference probes, which were chosen for their tissue-selectivity, dynamic range coverage and alignment to the same exemplar transcript sequence across all three platforms. The data generated from testing three biological replicates of the reagent at eight laboratories on three array formats provides a benchmark set for both laboratory and data processing performance assessments. Close agreement with target ratios adjusted for sample complexity was achieved on all platforms and low variance was observed among platforms, replicates and sites. The mixed tissue design produces a reagent with known gene expression changes within a complex sample and can serve as a paradigm for performance standards for microarrays that target other species

    The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reproducibility is a fundamental requirement in scientific experiments. Some recent publications have claimed that microarrays are unreliable because lists of differentially expressed genes (DEGs) are not reproducible in similar experiments. Meanwhile, new statistical methods for identifying DEGs continue to appear in the scientific literature. The resultant variety of existing and emerging methods exacerbates confusion and continuing debate in the microarray community on the appropriate choice of methods for identifying reliable DEG lists.</p> <p>Results</p> <p>Using the data sets generated by the MicroArray Quality Control (MAQC) project, we investigated the impact on the reproducibility of DEG lists of a few widely used gene selection procedures. We present comprehensive results from inter-site comparisons using the same microarray platform, cross-platform comparisons using multiple microarray platforms, and comparisons between microarray results and those from TaqMan – the widely regarded "standard" gene expression platform. Our results demonstrate that (1) previously reported discordance between DEG lists could simply result from ranking and selecting DEGs solely by statistical significance (<it>P</it>) derived from widely used simple <it>t</it>-tests; (2) when fold change (FC) is used as the ranking criterion with a non-stringent <it>P</it>-value cutoff filtering, the DEG lists become much more reproducible, especially when fewer genes are selected as differentially expressed, as is the case in most microarray studies; and (3) the instability of short DEG lists solely based on <it>P</it>-value ranking is an expected mathematical consequence of the high variability of the <it>t</it>-values; the more stringent the <it>P</it>-value threshold, the less reproducible the DEG list is. These observations are also consistent with results from extensive simulation calculations.</p> <p>Conclusion</p> <p>We recommend the use of FC-ranking plus a non-stringent <it>P </it>cutoff as a straightforward and baseline practice in order to generate more reproducible DEG lists. Specifically, the <it>P</it>-value cutoff should not be stringent (too small) and FC should be as large as possible. Our results provide practical guidance to choose the appropriate FC and <it>P</it>-value cutoffs when selecting a given number of DEGs. The FC criterion enhances reproducibility, whereas the <it>P </it>criterion balances sensitivity and specificity.</p
    corecore