35,533 research outputs found
Metric and topo-geometric properties of urban street networks: some convergences, divergences, and new results
The theory of cities, which has grown out of the use of space syntax techniques in urban studies, proposes a curious mathematical duality: that urban space is locally metric but globally topo-geometric. Evidence for local metricity comes from such generic phenomena as grid intensification to reduce mean trip lengths in live centres, the fall of movement from attractors with metric distance, and the commonly observed decay of shopping with metric distance from an intersection. Evidence for global topo-geometry come from the fact that we need to utilise both the geometry and connectedness of the larger scale space network to arrive at configurational measures which optimally approximate movement patterns in the urban network. It might be conjectured that there is some threshold above which human being use some geometrical and topological representation of the urban grid rather than the sense of bodily distance to making movement decisions, but this is unknown. The discarding of metric properties in the large scale urban grid has, however, been controversial. Here we cast a new light on this duality. We show first some phenomena in which metric and topo-geometric measures of urban space converge and diverge, and in doing so clarify the relation between the metric and topo-geometric properties of urban spatial networks. We then show how metric measures can be used to create a new urban phenomenon: the partitioning of the background network of urban space into a network of semi-discrete patches by applying metric universal distance measures at different metric radii, suggesting a natural spatial area-isation of the city at all scales. On this basis we suggest a key clarification of the generic structure of cities: that metric universal distance captures exactly the formally and functionally local patchwork properties of the network, most notably the spatial differentiation of areas, while the top-geometric measures identifying the structure which overcomes locality and links the urban patchwork into a whole at different scales
Metric and topo-geometric properties of urban street networks: some convergences, divergences and new results
The theory of cities, which has grown out of the use of space syntax techniques in urban studies, proposes a curious mathematical duality: that urban space is locally metric but globally topo-geometric. Evidence for local metricity comes from such generic phenomena as grid intensification to reduce mean trip lengths in live centres, the fall of movement from attractors with metric distance, and the commonly observed decay of shopping with metric distance from an intersection. Evidence for global topo-geometry come from the fact that we need to utilise both the geometry and connectedness of the larger scale space network to arrive at configurational measures which optimally approximate movement patterns in the urban network. It might be conjectured that there is some threshold above which human being use some geometrical and topological representation of the urban grid rather than the sense of bodily distance to making movement decisions, but this is unknown. The discarding of metric properties in the large scale urban grid has, however, been controversial. Here we cast a new light on this duality. We show first some phenomena in which metric and topo-geometric measures of urban space converge and diverge, and in doing so clarify the relation between the metric and topo-geometric properties of urban spatial networks. We then show how metric measures can be used to create a new urban phenomenon: the partitioning of the background network of urban space into a network of semi-discrete patches by applying metric universal distance measures at different metric radii, suggesting a natural spatial area-isation of the city at all scales. On this basis we suggest a key clarification of the generic structure of cities: that metric universal distance captures exactly the formally and functionally local patchwork properties of the network, most notably the spatial differentiation of areas, while the top-geometric measures identifying the structure which overcomes locality and links the urban patchwork into a whole at different scales
Calculation of wind-driven surface currents in the North Atlantic Ocean
Calculations to simulate the wind driven near surface currents of the North Atlantic Ocean are described. The primitive equations were integrated on a finite difference grid with a horizontal resolution of 2.5 deg in longitude and latitude. The model ocean was homogeneous with a uniform depth of 100 m and with five levels in the vertical direction. A form of the rigid-lid approximation was applied. Generally, the computed surface current patterns agreed with observed currents. The development of a subsurface equatorial countercurrent was observed
Cratering in low-density targets
Cratering in low density targets, and comparisons of various hypervelocity projectile-target combination
Extrema statistics in the dynamics of a non-Gaussian random field
When the equations that govern the dynamics of a random field are nonlinear,
the field can develop with time non-Gaussian statistics even if its initial
condition is Gaussian. Here, we provide a general framework for calculating the
effect of the underlying nonlinear dynamics on the relative densities of maxima
and minima of the field. Using this simple geometrical probe, we can identify
the size of the non-Gaussian contributions in the random field, or
alternatively the magnitude of the nonlinear terms in the underlying equations
of motion. We demonstrate our approach by applying it to an initially Gaussian
field that evolves according to the deterministic KPZ equation, which models
surface growth and shock dynamics.Comment: 9 pages, 3 figure
- …