339 research outputs found

    Prediction of the thermal environment and thermal response of simple panels exposed to radiant heat

    Get PDF
    A method of predicting the radiant heat flux distribution produced by a bank of tubular quartz heaters was applied to a radiant system consisting of a single unreflected lamp irradiating a flat metallic incident surface. In this manner, the method was experimentally verified for various radiant system parameter settings and used as a source of input for a finite element thermal analysis. Two finite element thermal analyses were applied to a thermal system consisting of a thin metallic panel exposed to radiant surface heating. A two-dimensional steady-state finite element thermal analysis algorithm, based on Galerkin's Method of Weighted Residuals (GFE), was formulated specifically for this problem and was used in comparison to the thermal analyzers of the Engineering Analysis Language (EAL). Both analyses allow conduction, convection, and radiation boundary conditions. Differences in the respective finite element formulation are discussed in terms of their accuracy and resulting comparison discrepancies. The thermal analyses are shown to perform well for the comparisons presented here with some important precautions about the various boundary condition models. A description of the experiment, corresponding analytical modeling, and resulting comparisons are presented

    Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites

    Get PDF
    A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments

    Active Flow Effectors for Noise and Separation Control

    Get PDF
    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control

    Development of a SMA-Based, Slat-Gap Filler for Airframe Noise Reduction

    Get PDF
    Noise produced by unsteady flow around aircraft structures, termed airframe noise, is an important source of aircraft noise during the approach and landing phases of flight. Conventional leading-edge-slat devices for high lift on typical transport aircraft are a prominent source of airframe noise. Many concepts for slat noise reduction have been investigated. Slat-cove fillers have emerged as an attractive solution, but they maintain the gap flow, leaving some noise production mechanisms unabated, and thus represent a nonoptimal solution. Drooped-leading-edge (DLE) concepts have been proposed as "optimal" because the gap flow is eliminated. The deployed leading edge device is not distinct and separate from the main wing in DLE concepts and the high-lift performance suffers at high angles of attack (alpha) as a consequence. Elusive high-alpha performance and excessive weight penalty have stymied DLE development. The fact that high-lift performance of DLE systems is only affected at high alpha suggests another concept that simultaneously achieves the high-lift of the baseline airfoil and the noise reduction of DLE concepts. The concept involves utilizing a conventional leading-edge slat device and a deformable structure that is deployed from the leading edge of the main wing and closes the gap between the slat and main wing, termed a slat-gap filler (SGF). The deployable structure consists of a portion of the skin of the main wing and it is driven in conjunction with the slat during deployment and retraction. Benchtop models have been developed to assess the feasibility and to study important parameters. Computational models have assisted in the bench-top model design and provided valuable insight in the parameter space as well as the feasibility

    Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems

    Get PDF
    A method is developed for predicting the radiant heat flux distribution produced by tungsten filament, tubular fused-quartz envelope heating systems with reflectors. The method is an application of Monte Carlo simulation, which takes the form of a random walk or ray tracing scheme. The method is applied to four systems of increasing complexity, including a single lamp without a reflector, a single lamp with a Hat reflector, a single lamp with a parabolic reflector, and up to six lamps in a six-lamp contoured-reflector heating unit. The application of the Monte Carlo method to the simulation of the thermal radiation generated by these systems is discussed. The procedures for numerical implementation are also presented. Experiments were conducted to study these quartz heating systems and to acquire measurements of the corresponding empirical heat flux distributions for correlation with analysis. The experiments were conducted such that several complicating factors could be isolated and studied sequentially. Comparisons of the experimental results with analysis are presented and discussed. Good agreement between the experimental and simulated results was obtained in all cases. This study shows that this method can be used to analyze very complicated quartz heating systems and can account for factors such as spectral properties, specular reflection from curved surfaces, source enhancement due to reflectors and/or adjacent sources, and interaction with a participating medium in a straightforward manner

    Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS

    Get PDF
    A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases

    On the Response of a Nonlinear Structure to High Kurtosis Non-Gaussian Random Loadings

    Get PDF
    This paper is a follow-on to recent work by the authors in which the response and high-cycle fatigue of a nonlinear structure subject to non-Gaussian loadings was found to vary markedly depending on the nature of the loading. There it was found that a non-Gaussian loading having a steady rate of short-duration, high-excursion peaks produced essentially the same response as would have been incurred by a Gaussian loading. In contrast, a non-Gaussian loading having the same kurtosis, but with bursts of high-excursion peaks was found to elicit a much greater response. This work is meant to answer the question of when consideration of a loading probability distribution other than Gaussian is important. The approach entailed nonlinear numerical simulation of a beam structure under Gaussian and non-Gaussian random excitations. Whether the structure responded in a Gaussian or non-Gaussian manner was determined by adherence to, or violations of, the Central Limit Theorem. Over a practical range of damping, it was found that the linear response to a non-Gaussian loading was Gaussian when the period of the system impulse response is much greater than the rate of peaks in the loading. Lower damping reduced the kurtosis, but only when the linear response was non-Gaussian. In the nonlinear regime, the response was found to be non-Gaussian for all loadings. The effect of a spring-hardening type of nonlinearity was found to limit extreme values and thereby lower the kurtosis relative to the linear response regime. In this case, lower damping gave rise to greater nonlinearity, resulting in lower kurtosis than a higher level of damping

    Fabricating Composite-Material Structures Containing SMA Ribbons

    Get PDF
    An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only

    AC Electric Field Activated Shape Memory Polymer Composite

    Get PDF
    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz

    Testing of SMA-enabled Active Chevron Prototypes under Representative Flow Conditions

    Get PDF
    Control of jet noise continues to be an important research topic. Exhaust-nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from active chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and secondarily for technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). SMA actuators are embedded on one side of the neutral axis of the structure such that thermal excitation, via joule heating, generates a moment and deflects the structure. The performance of two active chevron concepts is demonstrated in the presence of representative flow conditions. One of the concepts is shown to possess significant advantages for the proposed application and is selected for further development. Fabrication and design changes are described and shown to produce a chevron prototype that meets the performance objectives
    corecore