45,926 research outputs found
Homotopy Quantum Field Theories and Related Ideas
In this short note we provide a review of some developments in the area of
homotopy quantum field theories, loosely based on a talk given by the second
author at the Xth Oporto Meeting on Geometry, Topology and Physics.Comment: 8 pages, 2 figures; correcte
Scalar Field as Dark Matter in the Universe
We investigate the hypothesis that the scalar field is the dark matter and
the dark energy in the Cosmos, wich comprises about 95% of the matter of the
Universe. We show that this hypothesis explains quite well the recent
observations on type Ia supernovae.Comment: 4 pages REVTeX, 1 eps figure. Minor changes. To appear in Classical
and Quantum Gravit
Axions and SN1987A
The effect of free-streaming axion emission on numerical models for the cooling of the newly born neutron star associated with SN1987A is considered. It is found that for an axion mass of greater than approximately 10 to the -3 eV, axion emission shortens the duration of the expected neutrino burst so significantly that it would be inconsistent with the neutrino observations made by the Kamiokande II and Irvine-Michigan-Brookhaven detectors. However, the possibility has not been investigated that axion trapping (which should occur for masses greater than or equal to 0.02 eV) sufficiently reduces axion emission so that axion masses greater than approximately 2 eV would be consistent with the neutrino observations
Abelian homotopy Dijkgraaf-Witten theory
We construct a version of Dijkgraaf-Witten theory based on a compact abelian
Lie group within the formalism of Turaev's homotopy quantum field theory. As an
application we show that the 2+1-dimensional theory based on U(1) classifies
lens spaces up to homotopy type.Comment: 23 pages, 1 figur
Use of an audio-paced incremental swimming test in young national-level swimmers
Purpose:To evaluate the reliability and sensitivity to training of an audio-paced incremental swimming test.Methods:Eight young national-level male swimmers (age 15 ± 1 year) performed a 7 × 200-m incremental swimming test (velocities 1.19, 1.24, 1.28, 1.33, 1.39, and 1.45 m/s and maximal sprint pace) using an audio-pacing device. The same test was performed 4 times by each participant, 1 wk apart to assess reliability (WK1, WK2) and after 9 and 20 wk of training (WK9, WK20). Blood lactate concentration ([La−]) and heart rate (HR) were recorded after each stage. Outcome measures were the velocity (v) and HR at lactate markers of 2 mM, 4 mM, and Δ1 mM.Results:Velocities at the lactate markers proved to be more reliable than HR, with typical errors ranging from 0.66% to 2.30% and 1.28% to 4.50%, respectively (shifts in mean ranged –0.91% to 0.73% and –0.84% to 1.79%, respectively). Across WK1, WK9, and WK20 there were significant improvements in peak velocity (P < .001) and each of the velocities associated with the lactate markers (P < .05), whereas only HR at Δ1 mM improved (P < .05).Conclusions:This article demonstrates that an audio-paced incremental swimming test is reliable for use with junior swimmers and is sensitive to changes observed after training. The postswimming measurement of HR in the pool was comparatively less reliable.</jats:sec
Non-equilibrium raft-like membrane domains under continuous recycling
We present a model for the kinetics of spontaneous membrane domain (raft)
assembly that includes the effect of membrane recycling ubiquitous in living
cells. We show that the domains have a broad power-law distribution with an
average radius that scales with the 1/4 power of the domain lifetime when the
line tension at the domain edges is large. For biologically reasonable
recycling and diffusion rates the average domain radius is in the tens of nm
range, consistent with observations. This represents one possible link between
signaling (involving rafts) and traffic (recycling) in cells. Finally, we
present evidence that suggests that the average raft size may be the same for
all scale-free recycling schemes.Comment: 8 pages, 5 figure
The PL calibration for Milky Way Cepheids and its implications for the distance scale
The rationale behind recent calibrations of the Cepheid PL relation using the
Wesenheit formulation is reviewed and reanalyzed, and it is shown that recent
conclusions regarding a possible change in slope of the PL relation for
short-period and long-period Cepheids are tied to a pathological distribution
of HST calibrators within the instability strip. A recalibration of the
period-luminosity relation is obtained using Galactic Cepheids in open clusters
and groups, the resulting relationship, described by log L/L_sun =
2.415(+-0.035) + 1.148(+-0.044)log P, exhibiting only the moderate scatter
expected from color spread within the instability strip. The relationship is
confirmed by Cepheids with HST parallaxes, although without the need for
Lutz-Kelker corrections, and in general by Cepheids with revised Hipparcos
parallaxes, albeit with concerns about the cited precisions of the latter. A
Wesenheit formulation of Wv = -2.259(+-0.083) - 4.185(+-0.103)log P for
Galactic Cepheids is tested successfully using Cepheids in the inner regions of
the galaxy NGC 4258, confirming the independent geometrical distance
established for the galaxy from OH masers. Differences between the extinction
properties of interstellar and extragalactic dust may yet play an important
role in the further calibration of the Cepheid PL relation and its application
to the extragalactic distance scale.Comment: Accepted for Publication (Astrophysics & Space Science
- …