47,724 research outputs found
Atmospheric effects on infrared multispectral sensing of sea-surface temperature from space
Atmospheric effects on infrared multispectral sensing of sea-surface temperature from spac
Paleoseismic and Slip-Rate Observations along the Honey Lake Fault Zone, Northeastern California, USA
The Honey Lake fault is a major strike-slip fault in northeastern California that accommodates northwest-directed right-lateral shear in the northern Walker Lane. We reexamine the fault’s paleoseismic history and slip rate by evaluating a natural stream bank exposure of the fault and offset terrace riser. Structural and stratigraphic relations within the modern stream cut, radiocarbon ages, and a detailed topographic survey of the offset terrace riser are used to estimate a Holocene fault slip rate of 1.7–0.6 mm/yr or more. We also interpret the occurrence of at least four surface-rupturing earthquakes during the last 7025 calendar years before present (B.P.). Three of the surface-rupturing earthquakes occurred prior to 4670 calendar years B.P. and have interevent times that range between 730 and 990 yr. The stratigraphic record is limited after ~4670 calendar years B.P., and records evidence for at least one more subsequent surface-rupturing earthquake
Skylab food system
A review of the Skylab food system requirements, package designs, and launch configurations was presented. In-flight anomalies were discussed, and between-mission changes in design were described. A discussion of support for Skylab 3 and Skylab 4 mission extensions and of new items launched on these missions is included
The maxometer-dynamic and static tests
The ability to withstand extreme environmental conditions, such as the high flow velocities and extreme temperatures associated with the launch of aerospace vehicles, was considered in the developement of two maxometer models which are capable of measuring extremely high wind speeds (130 m/sec) and retaining a record of the peak speed over any given time period. The dynamic and static tests of these models are reported, along with pertinent results
NASA/MSFC FY-83 Atmospheric Research Review
Atmospheric research conducted at the Marshall Space Flight Center in FY 1983 is discussed. Clear air turbulence, gusts, and fog dispersal near airports is discussed. The use of Doppler Lidar signals in discussed, as are low level flow conditions that are hazardous to aircraft
Alessi 95 and the short period Cepheid SU Cassiopeiae
The parameters for the newly-discovered open cluster Alessi 95 are
established on the basis of available photometric and spectroscopic data, in
conjunction with new observations. Colour excesses for
spectroscopically-observed B and A-type stars near SU Cas follow a reddening
relation described by E(U-B)/E(B-V)=0.83+0.02*E(B-V), implying a value of
R=Av/E(B-V)~2.8 for the associated dust. Alessi 95 has a mean reddening of
E(B-V)_(B0)=0.35+-0.02 s.e., an intrinsic distance modulus of Vo-Mv=8.16+-0.04
s.e. (+-0.21 s.d.), d=429+-8 pc, and an estimated age of 10^8.2 yr from ZAMS
fitting of available UBV, CCD BV, NOMAD, and 2MASS JHKs observations of cluster
stars. SU Cas is a likely cluster member, with an inferred space reddening of
E(B-V)=0.33+-0.02 and a luminosity of =-3.15+-0.07 s.e., consistent with
overtone pulsation (P_FM=2.75 d), as also implied by the Cepheid's light curve
parameters, rate of period increase, and Hipparcos parallaxes for cluster
stars. There is excellent agreement of the distance estimates for SU Cas
inferred from cluster ZAMS fitting, its pulsation parallax derived from the
infrared surface brightness technique, and Hipparcos parallaxes, which all
agree to within a few percent.Comment: Accepted for Publication (MNRAS
Specification of a NAVSTAR Global Positioning System (GPS) receiver for a differential GPS ground system
One step towards the successful completion of a functional ground unit for the Differential Global Positioning System (DGPS) will be in choosing a currently available GPS receiver that will accurately measure the propagation times of the satellite signals and have the capability to be electrically interfaced with and controlled by a Digital Equipment Corporation (DEC) PDP-11/34A computer. The minimum requirements and characteristics of a NAVSTAR Global Positioning System (GPS) receiver are described. The specific technical specifications addressed include data accuracies and resolutions, receiver interface/external control, enclosure dimensions and mounting requirements, receiver operation, and environmental specifications
Knowledge development for organic systems: An example of weed management
Despite the large amount information on weed biology and specific weed control measures produced by researchers, organic farmers still prioritise weeds as an important area for further research. A recent project investigating weed management in organic farming systems has established that knowledge and learning are key requirements for this to be effective. Development of relevant, practically useful knowledge depends on access to information generated ‘scientifically’ by researchers and also to knowledge generated as a result of farmer experience with weeds. This requires that farmers, advisors and researchers take a participatory approach to collecting and processing information on weed management, using it to develop new and relevant knowledge. The appropriate framework for knowledge development is thus a collegiate one in which all stakeholders’ value and learn from the observations and experience of others. These findings have implications for the way in which research is conducted and funded
Continuously observing a dynamically decoupled spin-1 quantum gas
We continuously observe dynamical decoupling in a spin-1 quantum gas using a
weak optical measurement of spin precession. Continuous dynamical decoupling
aims to dramatically modify the character and energy spectrum of spin states to
render them insensitive to parasitic fluctuations. Continuous observation
measures this new spectrum in a single-preparation of the quantum gas. The
measured time-series contains seven tones, which spectrogram analysis parses as
splittings, coherences, and coupling strengths between the decoupled states in
real-time. With this we locate a regime where a transition between two states
is decoupled from magnetic field instabilities up to fourth order,
complementary to the parallel work at higher fields by Trypogeorgos et al.
(arXiv:1706.07876). The decoupled microscale quantum gas offers magnetic
sensitivity in a tunable band, persistent over many milliseconds: the length
scales, frequencies, and durations relevant to many applications, including
sensing biomagnetic phenomena such as neural spike trains.Comment: 5+ pages, 4 figures, 1 table; revised citation of Trypogeorgos et al.
(2017
- …