43 research outputs found

    Interactions between bitter taste, diet and dysbiosis: Consequences for appetite and obesity

    Get PDF
    The type 2 family of taste receptors (T2Rs) detect and respond to bitter tastants. These receptors are expressed throughout the gastrointestinal (GI) tract, with location dependant roles. In the oral cavity, T2Rs are involved in the conscious perception of bitter tastants, while in the lower GI tract they have roles in chemoreception and regulation of GI function. Through these diverse roles, these receptors may be involved in modulating appetite and diet, with consequences for weight regulation and obesity. Interestingly, the concentration of T2Rs in the GI tract is greatest in the large intestine, the organ with the densest colonisation of bacteria. The gut microbiome has been the subject of intense research, as a plethora of roles linking microbiota to human health continue to be uncovered. Of particular interest is the microbial signature associated with obesity. Obesity is a leading health concern, and advances in our understanding of this disease are needed. Diet is a known modifiable factor in the development of obesity. However, diet only partially explains disease risk. Changes in microbial energy harvesting by the microbiota plays a role in obesity, and the composition of these energy harvesting populations may be controlled by taste receptors. This review explores T2Rs as a potential link between obesity and the human GI microbiome

    Intense Sweeteners, Taste Receptors and the Gut Microbiome: A Metabolic Health Perspective

    Get PDF
    Intense sweeteners (IS) are often marketed as a healthier alternative to sugars, with the potential to aid in combating the worldwide rise of diabetes and obesity. However, their use has been counterintuitively associated with impaired glucose homeostasis, weight gain and altered gut microbiota. The nature of these associations, and the mechanisms responsible, are yet to be fully elucidated. Differences in their interaction with taste receptors may be a potential explanatory factor. Like sugars, IS stimulate sweet taste receptors, but due to their diverse structures, some are also able to stimulate bitter taste receptors. These receptors are expressed in the oral cavity and extra-orally, including throughout the gastrointestinal tract. They are involved in the modulation of appetite, glucose homeostasis and gut motility. Therefore, taste genotypes resulting in functional receptor changes and altered receptor expression levels may be associated with metabolic conditions. IS and taste receptors may both interact with the gastrointestinal microbiome, and their interactions may potentially explain the relationship between IS use, obesity and metabolic outcomes. While these elements are often studied in isolation, the potential interactions remain unexplored. Here, the current evidence of the relationship between IS use, obesity and metabolic outcomes is presented, and the potential roles for interactions with taste receptors and the gastrointestinal microbiota in modulating these relationships are explored

    Salt Taste Genotype, Dietary Habits and Biomarkers of Health: No Associations in an Elderly Cohort

    Get PDF
    A small amount of emerging research has observed variations between individual sensitivity, preference and intake of salt in the presence of single nucleotide polymorphisms (SNP) on the genes encoding salt taste receptors. Sodium intake is a significant risk factor for common diseases in elderly populations such as hypertension and cardiovascular disease; however, this does not fully explain the risk. Research into the influence of salt taste genetics on diet quality is yet to be undertaken and current research on indicators of health is limited and mixed in the direction of associations. Therefore, a secondary analysis of data from a well-characterised elderly cohort (the cross-sectional Retirement Health and Lifestyle Study, n = 536) was conducted to explore relationships between the salt taste-related SNP TRPV1-rs8065080 (assessed by Taqman genotyping assay), dietary habits and biomarkers of health. Data were analysed with standard least squares regression modelling and Tukey’s HSD post hoc tests. No association was found between the TRPV1-rs8065080 genotype, sodium intake or multiple diet quality indices (assessed by food frequency questionnaire). Sodium-related markers of health including blood pressure and markers of kidney function (urinary creatinine and albumin/creatinine ratio) and general health markers, such as Body Mass Index (BMI), were also not related to TRPV1-rs8065080 genotype. To date, this study is the most comprehensive investigation conducted to determine if the TRPV1-rs8065080 genotype relates to sodium intake and health markers influenced by sodium intake. Although no significant relationships were found, these findings are an important contribution to the limited body of knowledge surround this SNP. In addition to further research across other ages and cultures, the TRPV1-rs8065080 genotype may interact with other ion channels, and so further studies are required to determine if polymorphic variations influence sodium intake, diet and health. View Full-Tex

    Micronutrients and bioactive compounds in oral inflammatory diseases

    Get PDF
    Oral disorders are a significant public health concern. Oral inflammatory diseases are periodontal infections, oral mucosal lesions, pulpal and periapical lesions. The aetiology is multi-factorial and usually associated with a microbial origin, often driven by the overconsumption of free sugars. However, the role of micronutrients in these processes is now becoming apparent. Most of these studies have emphasised on systemic inflammation, but now the trends have shifted towards the role of micronutrients in oral inflammation. The progression of periodontal disease and healing of the periodontal tissues can be modulated by nutritional status. There are numerous degenerative changes in oral mucosa which have been observed during specific micronutrient deficiencies. Recent studies have advocated the use of dietary supplementation of particular micronutrients to treat the oral inflammatory lesions along with their standard treatment procedures. The micronutrient supplementation can be orally administered or locally delivered. Previously reviewed articles usually lacked compiled information regarding all oral inflammatory diseases. The current review provides an insight into the role of nutrition in oral inflammatory diseases, including periodontal disorders, oral mucosal lesions, pulpal and periapical lesions

    A computational framework for generating patient-specific vascular models and assessing uncertainty from medical images

    Full text link
    Patient-specific computational modeling is a popular, non-invasive method to answer medical questions. Medical images are used to extract geometric domains necessary to create these models, providing a predictive tool for clinicians. However, in vivo imaging is subject to uncertainty, impacting vessel dimensions essential to the mathematical modeling process. While there are numerous programs available to provide information about vessel length, radii, and position, there is currently no exact way to determine and calibrate these features. This raises the question, if we are building patient-specific models based on uncertain measurements, how accurate are the geometries we extract and how can we best represent a patient's vasculature? In this study, we develop a novel framework to determine vessel dimensions using change points. We explore the impact of uncertainty in the network extraction process on hemodynamics by varying vessel dimensions and segmenting the same images multiple times. Our analyses reveal that image segmentation, network size, and minor changes in radius and length have significant impacts on pressure and flow dynamics in rapidly branching structures and tapering vessels. Accordingly, we conclude that it is critical to understand how uncertainty in network geometry propagates to fluid dynamics, especially in clinical applications.Comment: 21 pages, 9 figure

    Genetic Variation in the Bitter Receptors Responsible for Epicatechin Detection Are Associated with BMI in an Elderly Cohort

    No full text
    Globally, more than one-third of adults are overweight. Overweight and obesity are complex and multifaceted conditions, associated with an increased risk of chronic illness and early mortality. While there are known risk factors, these alone do not fully explain the varying outcomes between individuals. Recently, taste receptors have been proposed to have a role in the risk for obesity. These receptors are expressed throughout the gastrointestinal tract. In this system, they may be involved in modulating dietary intake and metabolic processes. The taste 2 family of receptors (T2Rs) detects bitter compounds. Receptors T2R4 and T2R5 detect (-)-epicatechin (epicatechin), an antioxidant polyphenol, which may have protective effects against obesity. However, the potential role for taste receptors in this association has not been explored. This study assessed whether polymorphisms in TAS2R4 (rs2233998 and rs2234001) and TAS2R5 (rs2227264) were associated with body mass index (BMI). Genotyping (Taqman qPCR assays) was performed on DNA extracted from blood samples (n = 563) from an elderly cohort. Homozygosity for the minor allele of all polymorphisms was significantly associated with a lower BMI in males. The TAS2R4-rs2233998 CC genotype, the TAS2R4-rs2234001 CC genotype and the TAS2R5-rs2227264 TT genotype were associated with lower BMI (2.1, 2.1 and 2.2 units; p = 0.002, 0.003 and 0.001, respectively). Epicatechin intake was not associated with BMI and genotype was not associated with epicatechin intake. This suggests that the association between TAS2R genotype and elevated BMI risk occurs through altered extra-oral responses and not directly via altered epicatechin intake

    Interactions between Bitter Taste, Diet and Dysbiosis: Consequences for Appetite and Obesity

    No full text
    The type 2 family of taste receptors (T2Rs) detect and respond to bitter tastants. These receptors are expressed throughout the gastrointestinal (GI) tract, with location dependant roles. In the oral cavity, T2Rs are involved in the conscious perception of bitter tastants, while in the lower GI tract they have roles in chemoreception and regulation of GI function. Through these diverse roles, these receptors may be involved in modulating appetite and diet, with consequences for weight regulation and obesity. Interestingly, the concentration of T2Rs in the GI tract is greatest in the large intestine, the organ with the densest colonisation of bacteria. The gut microbiome has been the subject of intense research, as a plethora of roles linking microbiota to human health continue to be uncovered. Of particular interest is the microbial signature associated with obesity. Obesity is a leading health concern, and advances in our understanding of this disease are needed. Diet is a known modifiable factor in the development of obesity. However, diet only partially explains disease risk. Changes in microbial energy harvesting by the microbiota plays a role in obesity, and the composition of these energy harvesting populations may be controlled by taste receptors. This review explores T2Rs as a potential link between obesity and the human GI microbiome
    corecore