3,824 research outputs found

    Field-induced Tomonaga-Luttinger liquid phase of a two-leg spin-1/2 ladder with strong leg interactions

    Full text link
    We study the magnetic-field-induced quantum phase transition from a gapped quantum phase that has no magnetic long-range order into a gapless phase in the spin-1/2 ladder compound bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). At temperatures below about 1 K, the specific heat in the gapless phase attains an asymptotic linear temperature dependence, characteristic of a Tomonaga-Luttinger liquid. Inelastic neutron scattering and the specific heat measurements in both phases are in good agreement with theoretical calculations, demonstrating that DIMPY is the first model material for an S=1/2 two-leg spin ladder in the strong-leg regime.Comment: 4.1 pages, 4 figures (Fig. 4 updated), to appear in Physical Review Letter

    Neutron scattering from a coordination polymer quantum paramagnet

    Get PDF
    Inelastic neutron scattering measurements are reported for a powder sample of the spin-1/2 quantum paramagnet Cu(Quinoxaline)Br2\rm Cu(Quinoxaline)Br_2. Magnetic neutron scattering is identified above an energy gap of 1.9 meV. Analysis of the sharp spectral maximum at the onset indicates that the material is magnetically quasi-one-dimensional. Consideration of the wave vector dependence of the scattering and polymeric structure further identifies the material as a two-legged spin-1/2 ladder. Detailed comparison of the data to various models of magnetism in this material based on the single mode approximation and the continuous unitary transformation are presented. The latter theory provides an excellent account of the data with leg exchange J∥=2.0J_{\parallel}=2.0 meV and rung exchange J⊥=3.3J_{\perp}=3.3 meV.Comment: 10 pages, 11 figures, 1 tabl

    Micromegas TPC studies at high magnetic fields using the charge dispersion signal

    Get PDF
    The International Linear Collider (ILC) Time Projection Chamber (TPC) transverse space-point resolution goal is 100 microns for all tracks including stiff 90 degree tracks with the full 2 meter drift. A Micro Pattern Gas Detector (MPGD) readout TPC can achieve the target resolution with existing techniques using 1 mm or narrower pads at the expense of increased detector cost and complexity. The new MPGD readout technique of charge dispersion can achieve good resolution without resorting to narrow pads. This has been demonstrated previously for 2 mm x 6 mm pads with GEMs and Micromegas in cosmic ray tests and in a KEK beam test in a 1 Tesla magnet. We have recently tested a Micromegas-TPC using the charge dispersion readout concept in a high field super-conducting magnet at DESY. The measured Micromegas gain was found to be constant within 0.5% for magnetic fields up to 5 Tesla. With the strong suppression of transverse diffusion at high magnetic fields, we measure a flat 50 micron resolution at 5 Tesla over the full 15 cm drift length of our prototype TPC.Comment: 7 pages, 3 figure

    Wilson ratio of a Tomonaga-Luttinger liquid in a spin-1/2 Heisenberg ladder

    Full text link
    Using micromechanical force magnetometry, we have measured the magnetization of the strong-leg spin-1/2 ladder compound (C7_7H10_{10}N)2_2CuBr2_2 at temperatures down to 45 mK. Low-temperature magnetic susceptibility as a function of field exhibits a maximum near the critical field H_c at which the magnon gap vanishes, as expected for a gapped one-dimensional antiferromagnet. Above H_c a clear minimum appears in the magnetization as a function of temperature as predicted by theory. In this field region, the susceptibility in conjunction with our specific heat data yields the Wilson ratio R_W. The result supports the relation R_W=4K, where K is the Tomonaga-Luttinger-liquid parameter
    • …
    corecore