217 research outputs found
Recent advances in neutrinoless double beta decay search
Even after the discovery of neutrino flavour oscillations, based on data from
atmospheric, solar, reactor, and accelerator experiments, many characteristics
of the neutrino remain unknown. Only the neutrino square-mass differences and
the mixing angle values have been estimated, while the value of each mass
eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is
still escaping. Neutrinoless double beta decay (-DBD) experimental
discovery could be the ultimate answer to some delicate questions of elementary
particle and nuclear physics. The Majorana description of neutrinos allows the
-DBD process, and consequently either a mass value could be measured or
the existence of physics beyond the standard should be confirmed without any
doubt. As expected, the -DBD measurement is a very difficult field of
application for experimentalists. In this paper, after a short summary of the
latest results in neutrino physics, the experimental status, the R&D projects,
and perspectives in -DBD sector are reviewed.Comment: 36 pages, 7 figures, To be publish in Czech Journal of Physic
In vivo Analysis of Choroid Plexus Morphogenesis in Zebrafish
BACKGROUND: The choroid plexus (ChP), a component of the blood-brain barrier (BBB), produces the cerebrospinal fluid (CSF) and as a result plays a role in (i) protecting and nurturing the brain as well as (ii) in coordinating neuronal migration during neurodevelopment. Until now ChP development was not analyzed in living vertebrates due to technical problems. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed the formation of the fourth ventricle ChP of zebrafish in the GFP-tagged enhancer trap transgenic line SqET33-E20 (Gateways) by a combination of in vivo imaging, histology and mutant analysis. This process includes the formation of the tela choroidea (TC), the recruitment of cells from rhombic lips and, finally, the coalescence of TC resulting in formation of ChP. In Notch-deficient mib mutants the first phase of this process is affected with premature GFP expression, deficient cell recruitment into TC and abnormal patterning of ChP. In Hedgehog-deficient smu mutants the second phase of the ChP morphogenesis lacks cell recruitment and TC cells undergo apoptosis. CONCLUSIONS/SIGNIFICANCE: This study is the first to demonstrate the formation of ChP in vivo revealing a role of Notch and Hedgehog signalling pathways during different developmental phases of this process
Double beta decay: present status
The present status of double beta decay experiments (including the search for
, EC and ECEC processes) are reviewed. The results of
the most sensitive experiments are discussed. Average and recommended half-life
values for two-neutrino double beta decay are presented. Conservative upper
limits on effective Majorana neutrino mass and the coupling constant of the
Majoron to the neutrino are established as eV and , respectively. Proposals for future double beta decay
experiments with a sensitivity for the at the level of (0.01-0.1)
eV are considered.Comment: 33 pages included 7 figures and 14 tables; an extended version of the
invited talk at 13th Lomonosov Conference of Elementary Particle Physics,
23-29 August, 2007, Moscow, Russi
Directing Cluster Formation of Au Nanoparticles from Colloidal Solution
Discrete clusters of closely spaced Au nanoparticles can be utilized in devices from photovoltaics to molecular sensors because of the formation of strong local electromagnetic field enhancements when illuminated near their plasmon resonance. In this study, scalable, chemical self-organization methods are shown to produce Au nanoparticle clusters with uniform nanometer interparticle spacing. The performance of two different methods, namely electrophoresis and diffusion, for driving the attachment of Au nanoparticles using a chemical cross-linker on chemically patterned domains of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films are evaluated. Significantly, electrophoresis is found to produce similar surface coverage as diffusion in 1/6th of the processing time with an ~2-fold increase in the number of Au nanoparticles forming clusters. Furthermore, average interparticle spacing within Au nanoparticle clusters was found to decrease from 2-7 nm for diffusion deposition to approximately 1-2 nm for electrophoresis deposition, and the latter method exhibited better uniformity with most clusters appearing to have about 1 nm spacing between nanoparticles. The advantage of such fabrication capability is supported by calculations of local electric field enhancements using electromagnetic full-wave simulations from which we can estimate surface-enhanced Raman scattering (SERS) enhancements. In particular, full-wave results show that the maximum SERS enhancement, as estimated here as the fourth power of the local electric field, increases by a factor of 100 when the gap goes from 2 to 1 nm, reaching values as large as 10(10), strengthening the usage of electrophoresis versus diffusion for the development of molecular sensors
Phase diagram of the B- system at 5 GPa: Experimental and theoretical studies
X-ray diffraction with synchrotron radiation has been used to study in situ the chemical interaction of beta-rhombohedral boron with boron (III) oxide and phase relations in the B-B2O3 system at pressures up to 6 GPa in the temperature range from 300 to 2800 K. The B-B2O3 system has been thermodynamically analyzed, and its equilibrium phase diagram at 5 GPa has been constructed. Only one thermodynamically stable boron suboxide, B6O, exists in the system. It forms eutectic equilibria with boron and B2O3
- …