3 research outputs found

    Forward and Backward Steps in a Fibration

    Get PDF
    Distributive laws of various kinds occur widely in the theory of coalgebra, for instance to model automata constructions and trace semantics, and to interpret coalgebraic modal logic. We study steps, which are a general type of distributive law, that allow one to map coalgebras along an adjunction. In this paper, we address the question of what such mappings do to well known notions of equivalence, e.g., bisimilarity, behavioural equivalence, and logical equivalence. We do this using the characterisation of such notions of equivalence as (co)inductive predicates in a fibration. Our main contribution is the identification of conditions on the interaction between the steps and liftings, which guarantees preservation of fixed points by the mapping of coalgebras along the adjunction. We apply these conditions in the context of lax liftings proposed by Bonchi, Silva, Sokolova (2021), and generalise their result on preservation of bisimilarity in the construction of a belief state transformer. Further, we relate our results to properties of coalgebraic modal logics including expressivity and completeness

    Preservation and reflection of bisimilarity via invertible steps

    Get PDF
    In the theory of coalgebras, distributive laws give a general perspective on determinisation and other automata constructions. This perspective has recently been extended to include so-called weak distributive laws, covering several constructions on state-based systems that are not captured by regular distributive laws, such as the construction of a belief-state transformer from a probabilistic automaton, and ultrafilter extensions of Kripke frames. In this paper we first observe that weak distributive laws give rise to the more general notion of what we call an invertible step: a pair of natural transformations that allows to move coalgebras along an adjunction. Our main result is that part of the construction induced by an invertible step preserves and reflects bisimilarity. This covers results that have previously been shown by hand for the instances of ultrafilter extensions and belief-state transformers

    Corecursion up-to via Causal Transformations

    No full text
    Up-to techniques are a widely used family of enhancements of corecursion and coinduction. The soundness of these techniques can be shown systematically through the use of distributive laws. In this paper we propose instead to present up-to techniques as causal transformations, which are a certain type of natural transformations over the final sequence of a functor. These generalise the approach to proving soundness via distributive laws, and inherit their good compositionality properties. We show how causal transformations give rise to valid up-to techniques both for corecursive definitions and coinductive proofs
    corecore