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Abstract. In the theory of coalgebras, distributive laws give a general
perspective on determinisation and other automata constructions. This
perspective has recently been extended to include so-called weak distribu-
tive laws, covering several constructions on state-based systems that are
not captured by regular distributive laws, such as the construction of a
belief-state transformer from a probabilistic automaton, and ultrafilter
extensions of Kripke frames.
In this paper we first observe that weak distributive laws give rise to the
more general notion of what we call an invertible step: a pair of natural
transformations that allows to move coalgebras along an adjunction. Our
main result is that part of the construction induced by an invertible
step preserves and reflects bisimilarity. This covers results that have
previously been shown by hand for the instances of ultrafilter extensions
and belief-state transformers.
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1 Introduction

Distributive laws between a monad T and a functor B are ubiquitous in the
theory of coalgebras. They capture various forms of interaction between algebras
and coalgebras, including structural operational semantics [45,33], efficient proof
techniques [9] and a general coalgebraic determinisation procedure which applies
to a wide range of automata and other state-based systems [43,15,29].

The central idea of this general determinisation procedure is to interpret
coalgebras in the Eilenberg-Moore category EM(T ), as coalgebras for a lifting of
B that arises from the distributive law. Behavioural equivalence in EM(T ) then
amounts to desired notions of equivalence. For instance: language equivalence of
non-deterministic automata; weighted automata [7]; Mealy and Moore machines
with side-effects [43]; or various types of trace equivalence of transition systems [8].

An illustrative non-example of this general determinisation procedure is in
a natural construction of belief-state transformers from probabilistic automata,
which feature both non-determinism and probabilities. From a categorical per-
spective, the problem is related to the classical result that there is no suitable
distributive law of the probability distribution monad D over the powerset monad
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P [46] (also see [47,34] for other non-existence results of distributive laws). Hence,
general determinisation via distributive laws seems not applicable here.

Nevertheless, in [12] a concrete coalgebraic account of the construction of
belief-state transformers is given, in terms of a two-stage process:

1. from probabilistic automata to coalgebras in EM(D), which are a type of
labelled transition systems over convex algebras;

2. from these coalgebras in EM(D) back to plain transition systems in Set,
yielding the belief-state transformer.

A key result in op. cit. is that the second stage preserves and reflects behavioural
equivalence. This shows that behavioural equivalence of coalgebras in EM(D)
coincides with distribution bisimilarity on the belief-state transformer.

In [12,21] it was shown that this construction, in fact, arises from a canonical
weak distributive law of D over P [22]. Weak distributive laws correspond to
so-called weak liftings [19], and—as shown in [22]—these yield a new gener-
alised determinisation procedure which covers the above example, and precisely
instantiates to the two stages above. Further examples are the treatment of
alternating automata via weak distributive laws in [23], and weak distributive
laws for combining non-determinism with semimodules in [10].

However, the result for probabilistic automata that the second stage above
preserves and reflects behavioural equivalence has not yet been accounted for in
the abstract theory of determinisation via weak distributive laws.

In this paper we provide such an account, starting from a more general setting
than weak distributive laws: what we call invertible steps. These basically replace
the Eilenberg-Moore adjunction inherent in the weak liftings approach by a
general adjunction. In this context, a step allows one to lift the left adjoint to
coalgebras—this is a widely occurring phenomenon, for instance in the semantics
of coalgebraic modal logic, testing semantics and trace semantics (see [41] for an
overview). The key idea here is to assume a right inverse, allowing the lifting of
the right adjoint, such that we generalise the two-stage construction above.

We show that, in this setting of an invertible step, the second stage of the
two-stage construction preserves and reflects bisimilarity, under mild conditions.
As a consequence, we recover the above-mentioned results on preservation and
reflection of behavioural equivalence for probabilistic automata [12] for free from
the abstract theory.3 Another motivating example is that of coalgebras for the
Vietoris functor on the category of Stone spaces: we obtain that bisimilarity is
preserved and reflected by the forgetful functor, recovering the main result in [5].

In fact, the latter example is related to a coalgebraic presentation [36] of
ultrafilter extensions, a standard construction in modal logic [6]. It fits within the
general setting of invertible steps, but not directly in weak liftings, as it involves
the category of Stone spaces (for the duality with Boolean algebras). However,
if we move from Stone spaces to compact Hausdorff spaces, then the relevant
weak lifting (or invertible step) arises precisely from the weak distributive law
3 We focus on bisimilarity, but our setting allows for an easy argument that this

coincides with behavioural equivalence in this and many related examples.
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constructed by Garner [19]. The weak distributive law in loc. cit. thus gives rise
to ultrafilter extensions in modal logic.

Finally, we include an example of an invertible step involving Setop instead
of an Eilenberg-Moore category. Steps for adjunctions with opposite categories
are a standard way of presenting the semantics of coalgebraic modal logic [40,32].
The included example shows the generality of the approach.

Outline. Section 2 presents (invertible) steps, the relation to weak liftings and
distributive laws, and a range of examples. In Section 3 we recall the standard
notion of coalgebraic bisimilarity, defined via relation lifting. Section 4 contains
the main results on preservation and reflection of bisimilarity. In Section 5 we
discuss applications and instances of these results. We discuss other notions of
bisimulation, and future work, in Section 6.

2 Forward and Backward Steps

We briefly present the required theory of steps, first termed as such in [41]. This
structure occurs already in work on coalgebraic modal logic [35,14,40,32,17,38]
where a step gives the one-step semantics of a logic. In existing work, only what
we call a forward step is considered. Here, we also speak of backward steps, being
arrows in the opposite direction. In the sequel, such forward and backward steps
will usually be each other’s (one-sided) inverses, referred to as invertible steps.

Next, we recall how such steps give rise to liftings of functors between
categories of coalgebras and further, when the adjunction underlying the steps
can also be lifted to coalgebras [27]. Finally, we present examples of invertible
steps from the literature, which we return to in later sections.

For a functor B : C → C, a coalgebra is a pair (X, f) consisting of an object X
and an arrow f : X → BX. A homomorphism from (X, f) to (Y, g) is an arrow
h : X → Y such that g ◦ h = Bh ◦ f . Coalgebras and homomorphisms between
them form a category, denoted by Coalg(B), or CoalgC(B) if we wish to make
the underlying category explicit.

The category of sets and functions is denoted by Set. For a monad T , we
write EM(T ) for the category of Eilenberg-Moore algebras. The powerset monad
is denoted by P : Set → Set, given on objects by P(X) = {S | S ⊆ X}, and
the finitely-supported distribution monad by D : Set → Set, given by D(X) =
{ϕ : X → [0, 1] | ∑x∈X ϕ(x) = 1, supp(ϕ) finite} (see also [12]).

2.1 Invertible Steps

The basic setting of interest in this work consists of the following:

Definition 2.1. Given an adjunction P � Q : D → C and endofunctors B : C →
C and L : D → D as in the diagram

C D
P

B

Q

L� , (1)
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a (forward) step is a natural transformation δ : BQ → QL. A backward step is
simply a natural transformation ι : QL → BQ going the other way. If, moreover,
δ ◦ ι = id then we call δ an invertible step (with right inverse ι). Finally, if δ
witnesses an isomorphism then we call it an isomorphic step.

Notice the asymmetry in the definition of invertible step: ι is always assumed
to be a right inverse of δ. These invertible steps are the main focus of this paper.
Examples are given below in Section 2.2.

Step-induced liftings There is a bijective correspondence between a step

and its mate δ̂ : PB → LP given by PB PBQP PQLP LP
PBη PδP εLP

(see [37,31]). This mate and the backward step allow us to define liftings of P
and Q to the categories of coalgebras for B and L.

Definition 2.2. Given steps δ : BQ → QL and ι : QL → BQ, the step-induced
coalgebra liftings P : Coalg(B) → Coalg(L) and Q : Coalg(L) → Coalg(B) of P
and Q are defined by

f : X → BX �→ δ̂X ◦ Pf : PX → LPX (2)
g : Y → LY �→ ιY ◦Qg : QY → BQY (3)

on objects and act as P and Q on arrows. This is well-defined due to functoriality
of P and Q and naturality of δ̂ and ι.

It is shown in [27, Theorem 2.14] that, when δ and ι form an isomorphism,
the adjunction P � Q lifts to an adjunction P � Q between the step-induced
liftings. For our purposes it will be useful to split the isomorphism condition into
the cases where ι is the left or right inverse of δ.

Lemma 2.3. If δ ◦ ι = id, then the counit ε : PQ → Id of the adjunction P � Q
lifts to a natural transformation ε : P Q → Id. If ι ◦ δ = id, then the unit η : Id →
QP of the adjunction lifts to a natural transformation η : Id → QP .

The combination of these two liftings gives us the lifting of the adjunction.

Corollary 2.4. If δ and ι form an isomorphism, then P � Q.

In such a situation, Q (being a right adjoint) preserves the final coalgebra
for L (the limit of the empty diagram) when this exists. However, there are a
number of known examples where the step is not an isomorphism; instead we
only have a one-sided inverse. We consider, in particular, these invertible steps,
and in the next subsection give a number of examples of this setting.

2.2 Steps from weak liftings, and other examples

Example 2.5. Our first example arises from the work of Garner, who shows that
the Vietoris monad V on the category CHaus of compact Hausdorff spaces arises
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as a so-called weak lifting of the powerset monad [19] (we discuss weak liftings in
general after this example). For the definition of the Vietoris monad the reader is
referred to [19, Sec. 2.3]. The category CHaus is equivalent to the Eilenberg-Moore
category EM(β) of the ultrafilter monad β [39]. The weak lifting provided by
Garner consists of natural transformations ι, δ, satisfying δ ◦ ι = id:

Set EM(β) UV PU UV
F

P
U

V� ι δ (4)

where F � U is the Eilenberg-Moore adjunction of β. Notice that δ is an invertible
step, with right inverse ι. As shown by Garner, a component δX : PUX → UVX,
sends each subset S ∈ PUX to its topological closure. The components of ι
simply include the closed subsets into the powerset.

It turns out that this invertible step gives rise to ultrafilter extensions of
Kripke frames. In modal logic, ultrafilter extensions [6,20,4] are a construction
taking a Kripke frame (which we can see as a coalgebra for the powerset functor P)
with state space W and forming a new Kripke frame with states being ultrafilters
over W . The central motivation for this is in “bisimilarity-somewhere-else” results:
two states are modally equivalent iff they are bisimilar in the ultrafilter extension.

Now, the composition of the step-induced coalgebra liftings F : Coalg(P) →
Coalg(V) and U : Coalg(V) → Coalg(P), precisely yields the ultrafilter extension
of a Kripke frame. The first stage β is the actual extension, which turns the
Kripke frame into a V-coalgebra. The second stage U turns this back into a
Kripke frame, i.e., a powerset coalgebra in Set.

In [36], ultrafilter extensions are developed more generally for coalgebras for a
functor B : Set → Set, via the duality between Boolean algebras and Stone spaces.
In fact, since both V and the left adjoint F restrict to the category Stone of Stone
spaces, the invertible step δ, ι restricts to an invertible step in the restriction of
the above adjunction to Stone.

In general, for monads S, T on a category C, Garner [19] defines S̃ : EM(T ) →
EM(T ) to be a weak lifting of S if there are natural transformations

US̃ SU US̃ι δ (5)

with δ ◦ ι = id and satisfying further axioms, where U denotes the forgetful
functor from EM(T ) to C. They show that there is a bijective correspondence
between weak distributive laws of T over S, and weak liftings of S to EM(T ),
in case idempotents in C split (which holds for Set). Here, we do not assume a
monad structure on S (which is why the additional axioms are not relevant).
In this case, a weak lifting is precisely an invertible step, where the underlying
adjunction is an Eilenberg-Moore adjunction.

Example 2.6. In [11,12], a procedure is given for “determinising” probabilistic
automata (PAs), which model systems with both non-determinism and probabili-
ties, into belief state transformers. It was shown in [22] that this is an instance
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of a more general determinisation procedure induced by a weak lifting, which in
turn corresponds to a canonical weak distributive law.

Stated for a general monad T with the usual Eilenberg-Moore adjunction
F � U : EM(T ) → C, this general determinisation procedure thus starts from an
invertible step (weak lifting) δ : BU → UB. This gives rise to a two-step process:

CoalgC(BT ) CoalgEM(T )(B) CoalgC(B)F U (6)

where the second functor U is simply the step-induced lifting of U . The first
is a variation of a step-induced lifting (notice that it takes BT -coalgebras
rather than B-coalgebras as input), mapping a coalgebra f : X → BTX to

FX FBUFX BFUFX BFX
Ff δ̂UFX BεFX , where ε is the counit of the

Eilenberg-Moore adjunction. In fact, this can be viewed as a step-induced lifting
for BT which arises by composing δ and the counit, see [41].

We instantiate this to the Eilenberg-Moore adjunction of the distribution
monad D, where Pc is the convex powerset monad:

Set EM(D)

F
P

U

Pc� (7)

We take Pc(X) to have as underlying set {S ⊆ X | S convex} following [22].
This matches the usage of Pne + 1 and Pc + 1 in [12], where Pne and Pc are
defined to exclude the empty set. A subset is convex if it is closed under convex
combinations (see [12] for details). Further, the category EM(D) is equivalent to
the category of convex algebras and convex maps.

It is explained in [22, Sec. 5] that we have an invertible step in the setting
of Eq. (7), which sends a subset X to its convex hull (the smallest convex set
containing X) and that the lifting F of (6) then gives the transformation of a
probabilistic automaton into a belief state transformer in the category EM(D).
The second step is then to transfer the obtained belief state transformer back to
Set with the step-induced lifting of U . As shown in [12] and later recovered from
our abstract theory (Section 5), this yields a system with the same behaviour. In
fact, this is done for automata with labels, i.e., for the functors PL and PL

c with
L a set of labels. The weak lifting we will require in this context is given in [21].

Example 2.7. The following example from automata and languages considers a
dual adjunction P � Q : Dop → C. One motivation to discuss this kind of example
stems from coalgebraic modal logic where C commonly is some category of ‘spaces’
and D commonly is a category of ‘algebras’ [32]. The setup is as follows:

Set Setop 2L B(2−) 2L
2−

B

2−
L� ι δ (8)

Here, we have BX = 2× (PX)Σ and LX = 1 +Σ ×X for a fixed alphabet Σ.
The step δ is given by

δ(i, ξ) = {inl(∗) | i = 1} ∪ {inr(a, x) | a ∈ Σ, x ∈
⋃

ξ(a)} (9)
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This step δ is invertible, e.g., by ι as in Eq. (10).

ι(u) = (1 iff inl(∗) ∈ u, a �→ {v | {(a, x) | x ∈ v} ⊆ u}) (10)

A B-coalgebra is a non-deterministic automaton. An L-coalgebra in Setop is an
algebra X ← 1 +Σ ×X in Set, which can be seen as specifying the initial state
and transition structure of a deterministic automaton. From this point of view,
the coalgebra lifting Q : Coalg(L) → Coalg(B) can be seen as first reversing, and
then performing a powerset construction. The specific powerset construction
might depend on the chosen right inverse ι, as it is not unique. For ι as in (10),
for example, u a→ v in Q(A) if and only if each state in v is reachable from a
state in u via an a-transition in the reverse of A.

In Section 5 we return to these examples and show how we can apply the
techniques from Section 4 to obtain preservation and reflection of bisimilarity.

3 Relations, Liftings and Coalgebraic Bisimulations

We recall the standard notion of coalgebraic bisimulation defined via relation
lifting, broadly following [30,28]. Note, we will use some terminology from the
theory of fibrations to allow us to be more concise and many of the coming results
can be generalised to a larger class of fibrations, but knowledge of fibrations is
not required as we give a self-contained presentation of the fibration of relations.

We make the following assumptions for the remainder of the paper:

Assumption 3.1. We assume categories C,D with all finite limits, and factori-
sation systems (E1,M1), (E2,M2) respectively for which M1 = MonoC ,M2 =
MonoD and for any left adjoint functor P : C → D we have P (E1) ⊆ E2.

We assume finite limits mainly for binary products and pullbacks to allow
the definitions of relations and inverse images. The assumptions that maps in M
are mono means that pullbacks of abstract monos and factorisation both yield
monos, which represent subobjects. The final condition specifies that left adjoints
preserve abstract epis. This is required in Section 4.2 and holds, e.g., when the
involved categories possess a (RegEpi,Mono)-factorisation system [16,2], as in all
our examples from Sections 2.2 and 5.

For a category C satisfying the above, the category Rel(C) consists of:

– Objects of Rel(C) are subobjects R � X ×X of the binary product of the
object X with itself;

– A map R � X ×X → S � Y × Y in Rel(C) consists of a map u : X → Y
in C such that there is the following commutative diagram

R S

X ×X Y × Y
u×u

(11)
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In Set, these are subsets of the binary product of underlying sets as usual, and
maps between relations constitute maps between the products sending R to S,
i.e., xR y implies u(x)S u(y). Objects of Rel(Stone) are closed relations, as the
image of a mono representing a subobject is homeomorphic to its domain, and
images of continuous functions are compact and thus closed. In the case of an
Eilenberg-Moore category for a monad T , objects of Rel(EM(T )) are congruences,
as the map into the product is an algebra morphism.

Remark 3.2. A note on notation: we use for epis and for monos and the
subobjects they represent. We use for abstract epis and for abstract
monos, i.e., maps in E and M respectively.

Using the factorisation system on D, we lift a functor F : C → D to a functor
Rel(F ) : Rel(C) → Rel(D). The action on objects is given by the factorisation

FR F (X ×X) FX × FX

Rel(F )(R)

Fr

e

〈Fπ1,Fπ2〉

m
(12)

The action on arrows is defined by orthogonality. The resulting functor Rel(F )
is a lifting in the sense that the following diagram commutes

Rel(C) Rel(D)

C D

Rel(F )

p q

F

(13)

where p : Rel(C) → C sends a relation R � X ×X to the object X, and similarly
for q. We say (following the terminology of fibrations) that the relation R is above
the object X and a map between relations is above the map u from Eq. (11).
Note that commutativity of diagram (13) expresses that Rel(F ), applied to a
relation R � X ×X on X, yields a relation on FX.

Given a category of relations Rel(C), called the total category, the subcategory
(also called a fibre) RelX consists of objects R � X ×X and maps above the
identity on X. For relations in Set, such maps are inclusions of relations. In
general, these maps are unique, and writing R ≤ S iff there is an arrow from R
to S turns the fibre into a poset. A relation lifting Rel(F ) can be restricted to
the fibres to give a functor Rel(F )X : RelX → RelFX . Since RelX and RelFX are
posetal categories, Rel(F )X can be viewed as a monotone map.

For a map f : X → Y in C, we have the direct image and inverse image
functors

∐
f : RelX → RelY and f∗ : RelY → RelX . For relations on sets, we have∐

f (R ⊆ X ×X) = {(f(x), f(y)) | (x, y) ∈ R} and f∗(S ⊆ Y × Y ) = {(x, y) ∈
X ×X | (f(x), f(y)) ∈ S}. More generally, they are obtained as the factorisation
and pullback in the left and right diagram below respectively

R
∐

f (R) f∗(S) S

X ×X Y × Y X ×X Y × Y

r
∐

f (r) f∗(s)
�

s

f×f f×f

(14)
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It can further be shown that
∐

f � f∗. We say that Rel(F ) : Rel(C) → Rel(D)
preserves inverse images if Rel(F )X ◦ f∗ = (Ff)∗ ◦ Rel(F )Y .

In this context, a bisimulation for a B-coalgebra f : X → BX is a post-fixed
point of the endofunctor f∗ ◦Rel(B)X : RelX → RelX , i.e., a relation R � X×X
such that R ≤ f∗ ◦ Rel(B)X(R). Bisimilarity is then obtained as the greatest
fixed point ν(f∗ ◦Rel(B)X), if it exists. In Set a bisimulation is a relation R such
that R ⊆ (f × f)−1(Rel(B)(R)), i.e., if xR y then f(x) Rel(B)(R) f(y).

4 Preserving and Reflecting Bisimilarity

In this section we show that, in the presence of an invertible step, bisimilarity
is preserved and reflected by the step-induced lifting of the right adjoint, given
some further mild conditions. This allows us to recover a number of existing
results for concrete instances (Section 5).

Our approach is as follows:

– In Section 4.1, we make precise what it means for a monotone map to preserve
and reflect bisimulations;

– In Section 4.2, we obtain conditions which ensure that the step-induced
lifting of the right adjoint to bisimulations preserves and reflects bisimula-
tions/bisimilarity.

Throughout this section we assume categories C and D as in Assumption 3.1, and
an invertible step δ : BQ → QL with right inverse ι : QL → BQ (and P,Q,B,L
as in Definition 2.1).

4.1 Preservation and reflection

We now make precise what it means for a monotone map h to preserve and reflect
bisimulations. This will be instantiated to bisimulations, captured abstractly as
post-fixed points of a monotone map f : Γ → Γ on a poset Γ , which typically
consists of relations (Section 3). These are compared against a second type of
bisimulations, modelled as post-fixed points of another monotone map g : Δ → Δ.
This motivates the following definition.

Definition 4.1. Let Γ and Δ be posets, and f : Γ → Γ , g : Δ → Δ monotone
maps. A monotone map h : Γ → Δ preserves post-fixed points if x ≤ f(x) implies
h(x) ≤ g(h(x)). It reflects post-fixed points if the converse implication holds.

In the step setting of Eq. (1), bisimulations for B- and L-coalgebras can be
represented as post-fixed points of monotone maps on posets of relations as in
Section 3. More concretely:

– Bisimulations for an L-coalgebra f : X → LX are post-fixed points of the
monotone map f∗ ◦ Rel(L)X : RelX → RelX ;

– Bisimulations for the B-coalgebra ιX ◦ Qf : QX → BQX resulting from
the application of the step-induced lifting of Q are post-fixed points of
(ιX ◦Qf)∗ ◦ Rel(B)QX : RelQX → RelQX .
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The two can be compared via the restriction Rel(Q)X : RelX → RelQX of the
functor Rel(Q). Indeed, our main objective is to show that in the presence of
an invertible step, Rel(Q)X preserves and reflects post-fixed points representing
bisimulations, and that it maps the greatest fixed point in RelX (bisimilarity on
f) to the greatest fixed point in RelQX (bisimilarity on ιX ◦Qf). In this context
we speak about preservation and reflection of bisimulations/bisimilarity.

4.2 Proof of preservation and reflection

We are now ready to prove preservation and reflection of bisimilarity, in the sense
described in the previous subsection. First, the following basic lemma provides a
method of showing preservation and reflection of post-fixed points, which will be
useful for our purposes.

Lemma 4.2. Let Γ and Δ be posets, and f : Γ → Γ , g : Δ → Δ and h : Γ → Δ
monotone maps. Suppose that h has a left (lower) adjoint k : Δ → Γ , and the
equality gh = hf holds. Then h maps the greatest fixed point of f to the greatest
fixed point of g, when these exist; h preserves post-fixed points; and if h is
order-reflecting, then h reflects post-fixed points.

Categorically speaking, the equality gh = hf is an isomorphic step. Instan-
tiated to our setting of interest, Lemma 4.2 gives us a method for proving
preservation and reflection of bisimilarity: it suffices to show each of the following.

1. A left adjoint for Rel(Q)X (Lemma 4.7).
2. The equality (ιX ◦ Qf)∗ ◦ Rel(B)QX ◦ Rel(Q)X = Rel(Q)X ◦ f∗ ◦ Rel(L)X

(Theorem 4.9).
3. Order-reflection of Rel(Q)X (assumption; discussed at the end of this section).

To obtain the required adjunction between the fibres RelX and RelQX , we first
establish the adjunction Rel(P ) � Rel(Q) between the total relation categories.
Given Theorem 3.1, we can lift the unit and counit of the adjunction P � Q,
using the transformations constructed in the following lemma.

Lemma 4.3. Let F : C → D and G : D → E be functors, with Rel(F ) : Rel(C) →
Rel(D) and Rel(G) : Rel(D) → Rel(E) the corresponding relation liftings. Then
we have a natural transformation Rel(GF ) → Rel(G)Rel(F ). Further, if G pre-
serves abstract epis, then there is also a natural transformation Rel(G)Rel(F ) →
Rel(GF ). Also, the constructed transformations are above the identity.

We note that the first part is in [28, Exercise 4.4.6] and the result is proved
for Set endofunctors in [9, Lemma 14.1]. This allows the lifting of the adjunction,
which we note may also be obtainable from results on fibred adjunctions in [30,26],
but a direct proof is quite straightforward; the main idea is to use Lemma 4.3
together with preservation of abstract epis by P .
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Lemma 4.4. The adjunction P � Q : D → C lifts to relations, i.e., the following
diagram is commutative, and the unit and counit of the upper adjunction are
above the unit and counit of P � Q.

Rel(C) Rel(D)

C D

Rel(P )

p
Rel(Q)

q

�

P

Q

�

(15)

The relation lifting defined in Section 3 allows us to define endofunctors
Rel(B), Rel(L) in the context of the above adjunction:

Rel(C) Rel(D)

Rel(P )

Rel(B)

Rel(Q)

Rel(L)

�

(16)

In this setting, we may try to lift the step δ or its converse ι to this adjunction.
It turns out that δ always lifts. For ι, there is a sufficient condition which is
independent of ι itself: that Q preserves abstract epis. In both cases, this result
follows essentially from Lemma 4.3.

Proposition 4.5. For a forward step δ and backward step ι, we have:

1. δ lifts to relations, i.e., there exists a natural transformation δ : Rel(B) ◦
Rel(Q) → Rel(Q) ◦ Rel(L) above δ.

2. If Q preserves abstract epis, then ι lifts to relations, i.e., there exists a natural
transformation ι : Rel(Q) ◦ Rel(L) → Rel(B) ◦ Rel(Q) above ι.

The condition that Q preserves abstract epis holds, e.g., in case it is the
forgetful functor in an adjunction monadic over Set. This is because Eilenberg-
Moore categories of monads on Set have (RegEpi,Mono)-factorisation systems, and
the forgetful functor sends regular epis to epis in Set as discussed in [13, Example
2.3]. It also holds in the Stone-Set case, as Stone is a reflective subcategory of
CHaus (which is equivalent to the category of algebras for the ultrafilter monad).

The lifted steps δ and ι give step-induced liftings of Rel(P ) and Rel(Q)
between Coalg(Rel(B)) and Coalg(Rel(L)). Since bisimulations can be equivalently
presented as coalgebras for Rel(B) and Rel(L), these liftings can be used to capture
preservation of bisimulations. But it is less obvious what reflection means in this
context and how to prove it. For reflection of bisimulations by Rel(Q), we turn
our attention to the fibres, as described in the beginning of this section.

As a consequence of Proposition 4.5 and of δ ◦ ι = id, we obtain the following
result, which will later be used in the construction of a step on the fibres.

Lemma 4.6. Let δ be an invertible step with right inverse ι, and suppose Q
preserves abstract epis. Then Rel(Q)LX ◦ Rel(L)X = ι∗X ◦ Rel(B)QX ◦ Rel(Q)X .
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Adjoining the fibres Next, we construct an adjunction between the fibres
RelX and RelQX . The usual restriction Rel(Q)X of Rel(Q) to the fibre RelX
will be the right adjoint, similarly to the adjunction obtained earlier. To map
back into the fibre RelX , we post-compose Rel(P )QX with

∐
ε, the direct image

functor obtained from the counit of the adjunction Rel(P ) � Rel(Q). We note the
similarity with results on fibred adjunctions in [30], where only adjunctions over
a single base category are considered.

Lemma 4.7. We have an adjunction
∐

ε ◦Rel(P )QX � Rel(Q)X : RelX → RelQX .

The above lemma fulfils the first proof obligation stated in the beginning of
Section 4.2. It now remains to show the second proof obligation, i.e., that we
have an isomorphic step in the following setting:

RelQX RelX

∐

ε ◦Rel(P )QX

(ιX◦Qf)∗◦Rel(B)QX

Rel(Q)X

f∗◦Rel(L)X

�
(17)

To this end, we first show that Rel(Q) preserves inverse images, using the fact
that we can obtain inverse images as pullbacks inside the category of relations.
Since Rel(Q) is a right adjoint, it preserves these pullbacks.

Lemma 4.8. Rel(Q) preserves inverse images.

We are now ready to show the existence of the required isomorphic step.

Theorem 4.9. If Q preserves abstract epis, then for any L-coalgebra (X, f):

(ιX ◦Qf)∗ ◦ Rel(B)QX ◦ Rel(Q)X = Rel(Q)X ◦ f∗ ◦ Rel(L)X (18)

Proof. We have

(ιX ◦Qf)∗ ◦ Rel(B)QX ◦ Rel(Q)X = (Qf)∗ ◦ ι∗X ◦ Rel(B)QX ◦ Rel(Q)X (19)
= (Qf)∗ ◦ Rel(Q)LX ◦ Rel(L)X (20)
= Rel(Q)X ◦ f∗ ◦ Rel(L)X (21)

where Eq. (19) is an application of a basic fact on inverse images (technically,
that the poset fibration of relations is split), Eq. (20) holds by Lemma 4.6, and
Eq. (21) holds by Lemma 4.8.

We now reach our main result on preservation and reflection of bisimulations
and bisimilarity by Rel(Q)X .

Theorem 4.10. Let (X, f) be an L-coalgebra. Suppose that Q preserves abstract
epis. Then Rel(Q)X maps bisimilarity on (X, f) (when it exists) to bisimilarity on
Q(X, f). Further, Rel(Q)X preserves bisimulations and, if it is order-reflecting,
also reflects bisimulations.
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Proof. We have seen in Lemma 4.7, that Rel(Q)X has a left adjoint, and in
Theorem 4.9, that in this setting we have an isomorphic step. The result now
follows from Lemma 4.2.

While this result is formulated in terms of Rel(Q)X , we will also speak of
simply Q preserving and reflecting both bisimulations and bisimilarity.

As a special case of Theorem 4.10, we recover (a version of) the following
existing result found in [42,3,11,12].

Lemma 4.11. Assume functors B,L : C → C, and a natural transformation
ι : L → B. Then the functor Id : Coalg(L) → Coalg(B) defined by (X, f) �→
(X,σX ◦ f) on objects and identity on morphisms, preserves bisimulations. If
additionally ι has a left inverse, Id reflects bisimulations.

We briefly turn to the condition of order-reflectingness. As we are often
interested in cases where the right adjoint is a forgetful functor in the context of
an Eilenberg-Moore adjunction, it is useful to state the following.

Lemma 4.12. For a monad T with forgetful functor U : EM(T ) → C, the (re-
stricted) lifting Rel(U)X is an order-reflecting map.

If C = Set in the above lemma, then Rel(U)X is just the inclusion of the poset
of congruences RelX on an algebra X into the poset of all relations on its carrier.

In that case, we can also use the above to show preservation and reflection
of behavioural equivalence. Two states of a coalgebra (in Set) are behaviourally
equivalent if they can be identified by some coalgebra homomorphism. This can
be captured more abstractly using kernel bisimulations (see, e.g., [44]). Since U
is assumed to be a forgetful functor to Set, we simply define preservation and
reflection of behavioural equivalence by U to mean that for any two states x, y
of an L-coalgebra (X, f), x and y are behaviourally equivalent (for (X, f)) if and
only if they are behaviourally equivalent for U(X, f).

It turns out that, in our setting, coincidence of bisimilarity and behavioural
equivalence for L-coalgebras reduces to coincidence for B-coalgebras. This is
stated in the following lemma; the essence is that U is easily shown to preserve
behavioural equivalence.

Lemma 4.13. For a monad T , consider the Eilenberg-Moore adjunction F �
U : EM(T ) → Set with functors L : EM(T ) → EM(T ) and B : Set → Set, and
an invertible step δ : BU → UL. Further suppose that U preserves and reflects
bisimilarity, and that B preserves weak pullbacks. Then bisimilarity and be-
havioural equivalence for L-coalgebras coincide (and hence, U preserves and
reflects behavioural equivalence).

Remark 4.14. We conclude with a brief exploration of preservation and reflection
by the restriction of the left adjoint Rel(P )X , in the setting of

RelX RelPX
Rel(P )X

f∗◦Rel(B)X (δ̂X◦Pf)∗◦Rel(L)PX (22)
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with f : X → BX a B-coalgebra in this case. Here, we can obtain a backward
step Rel(P )X ◦ f∗ ◦ Rel(B)X ≤ (δ̂X ◦ Pf)∗ ◦ Rel(L)PX ◦ Rel(P )X which means
that we can lift Rel(P )X to bisimulations, so that these are preserved. However,
we cannot obtain a forward step in this context, thus reflection will not hold. This
is illustrated, e.g., by the example of ultrafilter extensions, where the ultrafilter
monad β certainly does not reflect bisimulations: in general, in the ultrafilter
extension more states will be bisimilar.

5 Applications

Now that we have obtained conditions for the preservation and reflection of
bisimilarity, we return to the examples of Section 2.2. We will show how a number
of existing non-trivial results can be recovered in a concise way. Further, the
Set-Stone adjunction used in the first example is known to not be monadic, and
so outside the scope of weak liftings, which indicates the generality of our results.

Ultrafilter Extensions and Vietoris bisimulations In Example 2.5, we
have seen how the construction of ultrafilter extensions can be obtained from
an invertible step, which arises from a weak lifting described by Garner. In the
current treatment of reflection and preservation of bisimilarity, we focus on the
restriction of this invertible step to the category Stone.

This brings us in line with [5], where a comparison is made between bisimilarity
for the Vietoris functor V : Stone → Stone and bisimilarity for the powerset functor
P : Set → Set, called Vietoris-bisimilarity and Kripke-bisimilarity respectively in
op. cit. More precisely, for a V-coalgebra (X, f), Kripke bisimilarity is bisimilarity
on U(X, f), where U is the step-induced lifting of the forgetful functor U : Stone →
Set. Vietoris bisimilarity is simply bisimilarity on the coalgebra (X, f) itself.

We consider the following results from [5]:

1. The relation liftings of P and V coincide for closed subsets [5, Prop 3.4]
2. Vietoris bisimulations are equivalently closed Kripke bisimulations [5, Thm 3.6]
3. The closure of a Kripke bisimulation is a Vietoris bisimulation [5, Thm 5.2]
4. Vietoris- and Kripke-bisimilarity are equivalent [5, Cor 3.10]

From the above discussion, we see that these results fit into the setting of
Section 4, so that they can be recovered using our results on the preservation
and reflection of bisimilarity as follows:

1. This follows from the equality of Lemma 4.6, as the action of ι∗ is exactly
the restriction to closed subsets. We can apply this lemma as U preserves
abstract epis, due to the same argument as for adjunctions monadic over Set
(see the discussion after Proposition 4.5), as Stone is also a regular category.

2. For this, we use preservation and reflection of bisimulations by the (restricted)
relation lifting Rel(U)X : RelX → RelUX of the forgetful functor, which is
simply the inclusion of the poset of closed relations on a Stone space X to
that of all relations on the underlying set.
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Indeed, preservation and reflection by Rel(U)X follows from Theorem 4.10.
We have seen that U : Stone → Set preserves abstract epis, so it only remains
to check that Rel(U)X is order-reflecting. This holds because Stone is a
reflective (i.e. full) subcategory of CHaus, which is monadic over Set.

3. The left adjoint
∐

ε ◦Rel(β)UX of Lemma 4.7 gives the closure of a relation.
Its lifting to bisimulations (cf. Remark 4.14) yields the desired result.

4. This holds since Rel(U)X maps the greatest fixed point of (ιX ◦ Uf)∗ ◦
Rel(P)UX to that of f∗ ◦ Rel(V)X , i.e., it preserves and reflects bisimilarity.

PAs and Belief State Transformers As discussed in Example 2.6, we can
determinise a PA to a coalgebra for the convex powerset functor Pc : EM(D) →
EM(D) using a lifting of F : Set → EM(D). The step-induced lifting of the
corresponding forgetful functor U : EM(D) → Set maps the Pc-coalgebra back
into Set, but we must take care that this does not change its behaviour. What
we can do now, is show that bisimilarity is preserved and reflected.

Once we know this, we can apply Lemma 4.13 to show the coincidence of
bisimilarity and behavioural equivalence in the case of the convex powerset functor
on EM(D) and the powerset functor on Set as this preserves weak pullbacks.
This coincidence is relevant for the generalisation of the corresponding results
of [12] (restricted to the convex powerset functor), which are formulated in terms
of behavioural equivalence. As mentioned in Example 2.6, the weak lifting we
require to cover automata with labels can be found in [21]. Consider the following:

1. The lifting of the forgetful functor U : EM(D) → Set preserves and reflects
behavioural equivalence on PL

c -coalgebras [12, Proposition 6.6].
2. A relation R is a kernel bisimulation for a PL

c -coalgebra (S, c) in EM(D) iff
it is a kernel bisimulation for U(S, c) and also a congruence.

Again, we can apply the results of Section 4 to recover these results. In fact,
in [12, Proposition 6.5], the second result is proved more generally, namely for
settings where a so-called lax lifting exists rather than the weak lifting we require.

1. We have seen that U preserves abstract epis as the adjunction in question is
monadic over Set. This allows us to apply Theorem 4.10 so that U indeed
preserves and reflects bisimulations, and the relevant lifting preserves and
reflects bisimilarity. From Lemma 4.13, it follows that U also preserves and
reflects behavioural equivalence.

2. Assuming (S, c) is a PL
c -coalgebra, this follows from Lemma 4.13 together

with the previous item, and the fact that bisimulations in Eilenberg-Moore
categories are congruences.

Automata For a different instance, we revisit Example 2.7 and consider the
basic adjunction P � Q : Dop → C. As a general remark, we note that if D admits
a factorization system (E ,M) with E a class of epis, and M a class of monos,
then (M, E) forms a factorization system for Dop, with M a class of epis in Dop,
and E a class of monos in Dop. We can explicitly describe Rel(Dop) as follows:
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– Objects of Rel(Dop) are quotients X +X � E of X +X;
– A map X +X � E → Y + Y � F consists of a map u : Y → X in D such

that there is the following commutative diagram

E F

X +X Y + Y
u+u

(23)

In the case D = Set, E = Epi and M = Mono. Further, every epi e : X +X � E
is isomorphic to an epi of the form X +X � (X +X)/∼ with ∼ an equivalence
relation on X +X. This gives us an equivalent description of Rel(Setop):

– Objects of Rel(Setop) are equivalence relations ∼ on X +X for a set X;
– A map ∼ ⊆ (X +X)2 → ≈ ⊆ (Y + Y )2 consists of a map u : Y → X such

that if j(y) ≈ j′(y′), then j(u(y)) ∼ j′(u(y′)), with j, j′ arbitrary coproduct
inclusions.

In particular, we see that the fibre over a set X consists of all equivalence relations
on X + X, ordered by reverse inclusion. Reindexing along a map u : X ← Y
maps an equivalence relation ≈ on Y + Y to the least equivalence relation ∼ on
X +X, such that j(u(y)) ∼ j′(u(y′)) for all j(y) ≈ j′(y′).

Focusing on the setting of (8) in Example 2.7, the lifting Rel(L) is given by

inl(∗) Rel(L)(∼) inr(∗) (24)
j((a, x)) Rel(L)(∼) j′((b, x)) ⇐⇒ a = b and j(x) ∼ j′(y) (25)

If f : X ← 1 + Σ × X is an L-coalgebra, we see that f∗ ◦ Rel(L)X maps an
equivalence relation ∼ on X +X to the least equivalence relation ≈ satisfying

inl(f(∗)) ≈ inr(f(∗)) (26)
j(f(a, x)) ≈ j′(f(a, y)) whenever j(x) ∼ j′(y) (27)

A post-fixed point of this map is an equivalence relation ∼ which relates inl(f(∗))
and inr(f(∗)) and is closed under the action of Σ on X +X. The greatest post-
fixed point is the least such relation, as relations in RelX are ordered by reverse
inclusion. It is easy to see that this is exactly the relation which identifies inl(x)
and inr(x) for those x reachable from f(∗).

Rel(Q), meanwhile, maps an equivalence relation ∼ on X +X to the relation
R on 2X given by

uRv ⇐⇒ inl[u] ∪ inr[v] is ∼-closed (28)

If X ′ is the set of reachable states, we conclude that Rel(Q) maps the greatest
bisimulation ∼ to the relation

uRv ⇐⇒ u ∩X ′ = v ∩X ′ (29)

The functor Q preserves (abstract) epis, as all epis in Setop are regular. Now,
Theorem 4.10 tells us that the relation (29) coincides with bisimilarity on the
automaton Q(X, f) from Example 2.7. It follows that the subautomaton on 2X

′

is minimal, and is the minimal automaton equivalent to Q(X, f).
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6 Discussion and Future Work

We studied the notion of an invertible step, which provides several constructions
on coalgebras via functor liftings. We showed that the lifting of the right adjoint,
induced by such an invertible step, preserves and reflects bisimilarity. This
abstract result instantiates to several concrete results from the literature, in
examples related to ultrafilter extensions and weak distributive laws.

We have focused on preservation and reflection of bisimilarity, defined in terms
of relation lifting. There are several other coalgebraic notions of behavioural
equivalence and bisimilarity [44]—we discuss these in the next subsection. Finally,
in Section 6.2 we list directions for future work.

6.1 Remarks on other notions of bisimulation

Aczel-Mendler bisimulations For a coalgebra f : X → LX, an Aczel-Mendler
bisimulation R � X ×X is defined by the existence of an L-coalgebra structure
R → LR on R such that the projection maps are coalgebra homomorphisms [1].

In the invertible step setting, applying a lifting Q to such a bisimulation,
yields a structure QR → BQR. However, this is not immediately a bisimulation,
as QR may not be a relation. We can obtain a relation by taking the image of
〈Qπ1, Qπ2〉 as we do to define relation lifting, but in general this is a Hermida-
Jacobs bisimulation [28, Exercise 4.5.2], rather than an Aczel-Mendler one.

On the other hand, if we wish to speak of reflection of Aczel-Mendler bisimu-
lations, we start with a span QX ← R → QX and try to construct a relation on
X. Using the adjunction of the step setting, we can transpose the projections to
obtain a span X ← PR → X. Again PR is not immediately a relation in general,
and taking the image yields a Rel(L)-coalgebra (not an L-coalgebra) as the
projections and the counit ε are coalgebra homomorphisms (see also [28, Exercise
4.5.4]). This in fact comes down to the same as the left adjoint

∐
ε ◦Rel(P )QX

constructed earlier. There we factorise to obtain the relation lifting and factorise
again for the direct image of ε, instead of factorising the paired transposes defined
using ε. We also do not explicitly use that ε is a coalgebra homomorphism (al-
though this follows from the step with right inverse and Lemma 2.3); instead we
lift the adjunction at the level of relations to give a map between bisimulations.
This is part of the motivation for the use of relation liftings and the corresponding
notion of bisimulations.

Going further, it is shown in [5] that there exists a Vietoris bisimulation which
is not an Aczel-Mendler bisimulation and, stronger, that there exist Vietoris
coalgebras with states which can be related by a Vietoris but not an Aczel-
Mendler bisimulation. Thus, the correspondences between bisimulations on Set
and Stone we have discussed in the previous sections are not obtainable when we
consider Aczel-Mendler bisimulations.

Kernel bisimulations/behavioural equivalence In applying our results to
the preservation and reflection of behavioural equivalence, we currently work
concretely; considering sets of states and identification of elements.
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We prefer to work more abstractly, as we have done for bisimilarity. To this
end, we may consider kernel bisimulations. A relation R � X ×X is a kernel
bisimulation on a coalgebra (X, f : X → LX) in a category D, if it is the pullback
of morphisms X → Z ← X in D forming a cospan of coalgebra homomorphisms
(X, f) → (Z, z) ← (X, f) in CoalgD(L). In a concrete setting this coincides with
behavioural equivalence, as such a pullback contains exactly the pairs of elements
of X which are identified in Z by the morphisms forming the cospan. We can
thus view this as a generalisation of behavioural equivalence as defined earlier.

Assuming an invertible step δ : BQ → QL, we would like to relate R to a
kernel bisimulation on the coalgebra Q(X, f) obtained by applying the step-
induced lifting of Q. Applying Q to the pullback square for R yields a pullback
square as Q is a right adjoint. However, as in our discussion of Aczel-Mendler
bisimulations, this may not be a relation. We may try to also use relation liftings
here, and take Rel(Q)(R) instead of Q(R), however this may no longer be a
pullback. It is not currently clear to us how to resolve these problems in general.

6.2 Future work

There are several further directions for future work. First, in this paper we focused
primarily on fibrations of relations, which suffice for our purposes of studying
bisimilarity. However, we expect that some of our results can be generalised to
arbitrary (posetal) fibrations. Such a generalisation could be the basis to study
preservation and reflection of other coinductive predicates and relations than
bisimilarity, which can be formulated in terms of fibrations and liftings (e.g., [25]).

Secondly, while we have shown in Section 5 how our results can be used
to recover the central results from [5], the latter have been generalised in two
directions: the recent [24] considers bisimulations for Vietoris coalgebras on
the category of arbitrary topological spaces, while [18] develops a notion of
neighbourhood bisimulation for coalgebras that allows to generalise the results
from [5] to a large variety of functors on the category of Stone spaces and their
corresponding functors on Set. We would like to understand whether or not our
framework is able to recover these generalisations.

Finally, the examples that we have studied in this paper do not yet exploit the
full generality of invertible steps: our main motivating examples are based on an
Eilenberg-Moore adjunction (or close, as in the example based on Stone spaces).
In [41] it is shown that steps are relevant in a much wider setting, for instance
when based on a Kleisli adjunction or on contravariant adjunctions and dualities.
The latter type of steps are relevant for coalgebraic modal logics—we have studied
a first instance in our example of deterministic and non-deterministic automata.
Investigating the meaning of invertible steps in these other types of adjunctions
is left for future work.
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