126 research outputs found

    Subliminal versus supraliminal stimuli activate neural responses in anterior cingulate cortex, fusiform gyrus and insula:a meta-analysis of fMRI studies

    Get PDF
    Background: Non-conscious neural activation may underlie various psychological functions in health and disorder. However, the neural substrates of non-conscious processing have not been entirely elucidated. Examining the differential effects of arousing stimuli that are consciously, versus unconsciously perceived will improve our knowledge of neural circuitry involved in non-conscious perception. Here we conduct preliminary analyses of neural activation in studies that have used both subliminal and supraliminal presentation of the same stimulus. Methods: We use Activation Likelihood Estimation (ALE) to examine functional Magnetic Resonance Imaging (fMRI) studies that uniquely present the same stimuli subliminally and supraliminally to healthy participants during functional magnetic resonance imaging (fMRI). We included a total of 193 foci from 9 studies representing subliminal stimulation and 315 foci from 10 studies representing supraliminal stimulation. Results: The anterior cingulate cortex is significantly activated during both subliminal and supraliminal stimulus presentation. Subliminal stimuli are linked to significantly increased activation in the right fusiform gyrus and right insula. Supraliminal stimuli show significantly increased activation in the left rostral anterior cingulate. Conclusions: Non-conscious processing of arousing stimuli may involve primary visual areas and may also recruit the insula, a brain area involved in eventual interoceptive awareness. The anterior cingulate is perhaps a key brain region for the integration of conscious and non-conscious processing. These preliminary data provide candidate brain regions for further study in to the neural correlates of conscious experience

    Treatment of developmental dyslexia: A review

    Get PDF
    Remarkably few research articles on the treatment of developmental dyslexia were published during the last 25 years. Some treatment research arose from the temporal processing theory, some from the phonological deficit hypothesis and some more from the balance model of learning to read and dyslexia. Within the framework of that model, this article reviews the aetiology of dyslexia sub-types, the neuropsychological rationale for treatment, the treatment techniques and the outcomes of treatment research. The possible mechanisms underlying the effects of treatment are discussed. © 2005 Informa UK Ltd All rights reserved

    The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroimaging researchers have developed rigorous community data and metadata standards that encourage meta-analysis as a method for establishing robust and meaningful convergence of knowledge of human brain structure and function. Capitalizing on these standards, the BrainMap project offers databases, software applications, and other associated tools for supporting and promoting quantitative coordinate-based meta-analysis of the structural and functional neuroimaging literature.</p> <p>Findings</p> <p>In this report, we describe recent technical updates to the project and provide an educational description for performing meta-analyses in the BrainMap environment.</p> <p>Conclusions</p> <p>The BrainMap project will continue to evolve in response to the meta-analytic needs of biomedical researchers in the structural and functional neuroimaging communities. Future work on the BrainMap project regarding software and hardware advances are also discussed.</p

    An Activation Force-based Affinity Measure for Analyzing Complex Networks

    Get PDF
    Affinity measure is a key factor that determines the quality of the analysis of a complex network. Here, we introduce a type of statistics, activation forces, to weight the links of a complex network and thereby develop a desired affinity measure. We show that the approach is superior in facilitating the analysis through experiments on a large-scale word network and a protein-protein interaction (PPI) network consisting of ∌5,000 human proteins. The experiment on the word network verifies that the measured word affinities are highly consistent with human knowledge. Further, the experiment on the PPI network verifies the measure and presents a general method for the identification of functionally similar proteins based on PPIs. Most strikingly, we find an affinity network that compactly connects the cancer-associated proteins to each other, which may reveal novel information for cancer study; this includes likely protein interactions and key proteins in cancer-related signal transduction pathways

    Immaturity of the Oculomotor Saccade and Vergence Interaction in Dyslexic Children: Evidence from a Reading and Visual Search Study

    Get PDF
    Studies comparing binocular eye movements during reading and visual search in dyslexic children are, at our knowledge, inexistent. In the present study we examined ocular motor characteristics in dyslexic children versus two groups of non dyslexic children with chronological/reading age-matched. Binocular eye movements were recorded by an infrared system (mobileEBT¼, e(ye)BRAIN) in twelve dyslexic children (mean age 11 years old) and a group of chronological age-matched (N = 9) and reading age-matched (N = 10) non dyslexic children. Two visual tasks were used: text reading and visual search. Independently of the task, the ocular motor behavior in dyslexic children is similar to those reported in reading age-matched non dyslexic children: many and longer fixations as well as poor quality of binocular coordination during and after the saccades. In contrast, chronological age-matched non dyslexic children showed a small number of fixations and short duration of fixations in reading task with respect to visual search task; furthermore their saccades were well yoked in both tasks. The atypical eye movement's patterns observed in dyslexic children suggest a deficiency in the visual attentional processing as well as an immaturity of the ocular motor saccade and vergence systems interaction
    • 

    corecore