480 research outputs found
Current and noise expressions for radio-frequency single-electron transistors
We derive self-consistent expressions of current and noise for
single-electron transistors driven by time-dependent perturbations. We take
into account effects of the electrical environment, higher-order co-tunneling,
and time-dependent perturbations under the two-charged state approximation
using the Schwinger-Kedysh approach combined with the generating functional
technique. For a given generating functional, we derive exact expressions for
tunneling currents and noises and present the forms in terms of transport
coefficients. It is also shown that in the adiabatic limit our results
encompass previous formulas. In order to reveal effects missing in static
cases, we apply the derived results to simulate realized radio-frequency
single-electron transistor. It is found that photon-assisted tunneling affects
largely the performance of the single-electron transistor by enhancing both
responses to gate charges and current noises. On various tunneling resistances
and frequencies of microwaves, the dependence of the charge sensitivity is also
discussed.Comment: 18 pages, 9 figure
Pentraxin 3 is up-regulated in epithelial mammary cells during Staphylococcus aureus intra-mammary infection in goat
Pentraxin 3 is the prototypic long pentraxin and is produced by different cell populations (dendritic cells, monocytes/macrophages, endothelial cells, and fibroblasts) after pro-inflammatory stimulation. Different studies demonstrated the up-regulation of PTX3 during mastitis in ruminants, but its role is still unknown. We first investigated the conservation of PTX3 sequence among different species and its pattern of expression in a wide panel of organs from healthy goats. We studied the role modulation of PTX3 during natural and experimental mammary infection, comparing its expression in blood, milk and mammary tissues from healthy and Staphylococcus aureus infected animals. We confirmed the high conservation of the molecule among the different species. Goat PTX3 was expressed at high levels in bone marrow, mammary gland, aorta, rectum, pancreas, skin and lungs. PTX3 was up-regulated in epithelial mammary cells and in milk cells after S. aureus infection, suggesting that it represents a first line of defense in goat udder
TRIS I: Absolute Measurements of the Sky Brightness Temperature at 0.6, 0.82 and 2.5 GHz
At frequencies close to 1 GHz the sky diffuse radiation is a superposition of
radiation of Galactic origin, the 3 K Relic or Cosmic Microwave Background
Radiation, and the signal produced by unresolved extragalactic sources. Because
of their different origin and space distribution the relative importance of the
three components varies with frequency and depends on the direction of
observation. With the aim of disentangling the components we built TRIS, a
system of three radiometers, and studied the temperature of the sky at , and GHz using geometrically scaled antennas
with identical beams (HPBW = ). Observations
included drift scans along a circle at constant declination
which provided the dependence of the sky signal on the
Right Ascension, and absolute measurement of the sky temperature at selected
points along the same scan circle. TRIS was installed at Campo Imperatore (lat.
= N, long.= , elevation = 2000 m a.s.l.) in
Central Italy, close to the Gran Sasso Laboratory.Comment: Accepted for publication in The Astrophysical Journa
Could humans recognize odor by phonon assisted tunneling?
Our sense of smell relies on sensitive, selective atomic-scale processes that
are initiated when a scent molecule meets specific receptors in the nose.
However, the physical mechanisms of detection are not clear. While odorant
shape and size are important, experiment indicates these are insufficient. One
novel proposal suggests inelastic electron tunneling from a donor to an
acceptor mediated by the odorant actuates a receptor, and provides critical
discrimination. We test the physical viability of this mechanism using a simple
but general model. Using values of key parameters in line with those for other
biomolecular systems, we find the proposed mechanism is consistent both with
the underlying physics and with observed features of smell, provided the
receptor has certain general properties. This mechanism suggests a distinct
paradigm for selective molecular interactions at receptors (the swipe card
model): recognition and actuation involve size and shape, but also exploit
other processes.Comment: 10 pages, 1 figur
Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms
Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 225-235, doi:10.1121/1.421469.The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically as a fluid material, (2) gastropods (Limacina retroversa) whose bodies include a hard elastic shell, and (3) siphonophores (Agalma okeni or elegans and Nanomia cara) whose bodies contain a gas inclusion (pneumatophore). The animals were collected from ocean waters off New England (Slope Water, Georges Bank, and the Gulf of Maine). The scattering properties were measured over parts or all of the frequency range 50 kHz to 1 MHz in a laboratory-style pulse-echo setup in a large tank at sea using live fresh specimens. Individual echoes as well as averages and ping-to-ping fluctuations of repeated echoes were studied. The material type of each group is shown to strongly affect both the overall echo level and pattern of the target strength versus frequency plots. In this first article of a two-part series, the dominant scattering mechanisms of the three animal types are determined principally by examining the structure of both the frequency spectra of individual broadband echoes and the compressed pulse (time series) output. Other information is also used involving the effect on overall levels due to (1) animal orientation and (2) tissue in animals having a gas inclusion (siphonophores). The results of this first paper show that (1) the euphausiids behave as weakly scattering fluid bodies and there are major contributions from at least two parts of the body to the echo (the number of contributions depends upon angle of orientation and shape), (2) the gastropods produce echoes from the front interface and possibly from a slow-traveling circumferential (Lamb) wave, and (3) the gas inclusion of the siphonophore dominates the echoes, but the tissue plays a role in the scattering and is especially important when analyzing echoes from individual animals on a ping-by-ping basis. The results of this paper serve as the basis for the development of acoustic scattering models in the companion paper [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998)].This work was supported
by the National Science Foundation Grant No. OCE-
9201264, the U.S. Office of Naval Research Grant Nos.
N00014-89-J-1729 and N00014-95-1-0287, and the MIT/
WHOI Joint Graduate Education Program
Quantum physics meets biology
Quantum physics and biology have long been regarded as unrelated disciplines,
describing nature at the inanimate microlevel on the one hand and living
species on the other hand. Over the last decades the life sciences have
succeeded in providing ever more and refined explanations of macroscopic
phenomena that were based on an improved understanding of molecular structures
and mechanisms. Simultaneously, quantum physics, originally rooted in a world
view of quantum coherences, entanglement and other non-classical effects, has
been heading towards systems of increasing complexity. The present perspective
article shall serve as a pedestrian guide to the growing interconnections
between the two fields. We recapitulate the generic and sometimes unintuitive
characteristics of quantum physics and point to a number of applications in the
life sciences. We discuss our criteria for a future quantum biology, its
current status, recent experimental progress and also the restrictions that
nature imposes on bold extrapolations of quantum theory to macroscopic
phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa
Emergence of antitumor cytolytic T cells is associated with maintenance of hematologic remission in children with acute myeloid leukemia.
Although the graft-versus-leukemia effect of allogeneic bone marrow transplantation (BMT) is of paramount importance in the maintenance of disease remission, the role played by the autologous T-cell response in antitumor immune surveillance is less defined. We evaluated the emergence of antileukemia cytotoxic T-lymphocyte precursors (CTLp's) and the correlation of this phenomenon with maintenance of hematologic remission in 16 children with acute myeloid leukemia (AML), treated with either chemotherapy alone (5 patients) or with autologous BMT (A-BMT, 11 patients). Antileukemia CTLp's were detectable in 8 patients in remission after induction chemotherapy; none of them subsequently had a relapse. Of the 8 patients who did not show detectable CTLp frequency while in remission after induction chemotherapy, 7 subsequently experienced leukemia relapse. In patients undergoing A-BMT, molecular fingerprinting of the TCR-Vbeta repertoire, performed on antileukemia lines, demonstrated that selected antileukemia T-cell clonotypes, detectable in bone marrow before transplantation, survived ex vivo pharmacologic purging and were found in the recipient after A-BMT. These data provide evidence for an active role of autologous T cells in the maintenance of hematologic remission and also suggest that quantification of antileukemia CTLp frequency may be a useful tool to identify patients at high risk for relapse, thus potentially benefiting from an allogeneic antitumor effect
Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient
Intensified droughts are affecting tropical forests across the globe. However, the underlying mechanisms of tree drought response and mortality are poorly understood. Hydraulic traits and especially hydraulic safety margins (HSMs), that is, the extent to which plants buffer themselves from thresholds of water stress, provide insights into species-specific drought vulnerability. We investigated hydraulic traits during an intense drought triggered by the 2015–2016 El Niño on 27 canopy tree species across three tropical forest sites with differing precipitation. We capitalized on the drought event as a time when plant water status might approach or exceed thresholds of water stress. We investigated the degree to which these traits varied across the rainfall gradient, as well as relationships among hydraulic traits and species-specific optimal moisture and mortality rates. There were no differences among sites for any measured trait. There was strong coordination among traits, with a network analysis revealing two major groups of coordinated traits. In one group, there were water potentials, turgor loss point, sapwood capacitance and density, HSMs, and mortality rate. In the second group, there was leaf mass per area, leaf dry matter content, hydraulic architecture (leaf area to sapwood area ratio), and species-specific optimal moisture. These results demonstrated that while species with greater safety from turgor loss had lower mortality rates, hydraulic architecture was the only trait that explained species’ moisture dependency. Species with a greater leaf area to sapwood area ratio were associated with drier sites and reduced their transpirational demand during the dry season via deciduousness
- …