484 research outputs found
Current and noise expressions for radio-frequency single-electron transistors
We derive self-consistent expressions of current and noise for
single-electron transistors driven by time-dependent perturbations. We take
into account effects of the electrical environment, higher-order co-tunneling,
and time-dependent perturbations under the two-charged state approximation
using the Schwinger-Kedysh approach combined with the generating functional
technique. For a given generating functional, we derive exact expressions for
tunneling currents and noises and present the forms in terms of transport
coefficients. It is also shown that in the adiabatic limit our results
encompass previous formulas. In order to reveal effects missing in static
cases, we apply the derived results to simulate realized radio-frequency
single-electron transistor. It is found that photon-assisted tunneling affects
largely the performance of the single-electron transistor by enhancing both
responses to gate charges and current noises. On various tunneling resistances
and frequencies of microwaves, the dependence of the charge sensitivity is also
discussed.Comment: 18 pages, 9 figure
Europees Loopkevercongres jubileert in Nederland
De 1e Europese loopkeverovereenkomst werd in 1969 in Wijster georganiseerd. 40 jaar erna wordt in 2009 het jubileumcongres weer in Nederland georganiseerd. Deze bijdrage belicht de bijzondere relatie tussen Nederland en de European Carabidologist Meeting (ECM
Could humans recognize odor by phonon assisted tunneling?
Our sense of smell relies on sensitive, selective atomic-scale processes that
are initiated when a scent molecule meets specific receptors in the nose.
However, the physical mechanisms of detection are not clear. While odorant
shape and size are important, experiment indicates these are insufficient. One
novel proposal suggests inelastic electron tunneling from a donor to an
acceptor mediated by the odorant actuates a receptor, and provides critical
discrimination. We test the physical viability of this mechanism using a simple
but general model. Using values of key parameters in line with those for other
biomolecular systems, we find the proposed mechanism is consistent both with
the underlying physics and with observed features of smell, provided the
receptor has certain general properties. This mechanism suggests a distinct
paradigm for selective molecular interactions at receptors (the swipe card
model): recognition and actuation involve size and shape, but also exploit
other processes.Comment: 10 pages, 1 figur
Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms
Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 225-235, doi:10.1121/1.421469.The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically as a fluid material, (2) gastropods (Limacina retroversa) whose bodies include a hard elastic shell, and (3) siphonophores (Agalma okeni or elegans and Nanomia cara) whose bodies contain a gas inclusion (pneumatophore). The animals were collected from ocean waters off New England (Slope Water, Georges Bank, and the Gulf of Maine). The scattering properties were measured over parts or all of the frequency range 50 kHz to 1 MHz in a laboratory-style pulse-echo setup in a large tank at sea using live fresh specimens. Individual echoes as well as averages and ping-to-ping fluctuations of repeated echoes were studied. The material type of each group is shown to strongly affect both the overall echo level and pattern of the target strength versus frequency plots. In this first article of a two-part series, the dominant scattering mechanisms of the three animal types are determined principally by examining the structure of both the frequency spectra of individual broadband echoes and the compressed pulse (time series) output. Other information is also used involving the effect on overall levels due to (1) animal orientation and (2) tissue in animals having a gas inclusion (siphonophores). The results of this first paper show that (1) the euphausiids behave as weakly scattering fluid bodies and there are major contributions from at least two parts of the body to the echo (the number of contributions depends upon angle of orientation and shape), (2) the gastropods produce echoes from the front interface and possibly from a slow-traveling circumferential (Lamb) wave, and (3) the gas inclusion of the siphonophore dominates the echoes, but the tissue plays a role in the scattering and is especially important when analyzing echoes from individual animals on a ping-by-ping basis. The results of this paper serve as the basis for the development of acoustic scattering models in the companion paper [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998)].This work was supported
by the National Science Foundation Grant No. OCE-
9201264, the U.S. Office of Naval Research Grant Nos.
N00014-89-J-1729 and N00014-95-1-0287, and the MIT/
WHOI Joint Graduate Education Program
Quantum physics meets biology
Quantum physics and biology have long been regarded as unrelated disciplines,
describing nature at the inanimate microlevel on the one hand and living
species on the other hand. Over the last decades the life sciences have
succeeded in providing ever more and refined explanations of macroscopic
phenomena that were based on an improved understanding of molecular structures
and mechanisms. Simultaneously, quantum physics, originally rooted in a world
view of quantum coherences, entanglement and other non-classical effects, has
been heading towards systems of increasing complexity. The present perspective
article shall serve as a pedestrian guide to the growing interconnections
between the two fields. We recapitulate the generic and sometimes unintuitive
characteristics of quantum physics and point to a number of applications in the
life sciences. We discuss our criteria for a future quantum biology, its
current status, recent experimental progress and also the restrictions that
nature imposes on bold extrapolations of quantum theory to macroscopic
phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa
Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy
How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe
- …