288 research outputs found

    Morphometric approach to many-body correlations in hard spheres

    Get PDF
    We model the thermodynamics of local structures within the hard sphere liquid at arbitrary volume fractions through the \textit{morphometric} calculation of nn-body correlations. We calculate absolute free energies of local geometric motifs in excellent quantitative agreement with molecular dynamics simulations across the liquid and supercooled liquid regimes. We find a bimodality in the density library of states where five-fold symmetric structures appear lower in free energy than four-fold symmetric structures, and from a single reaction path predict a relaxation barrier which scales linearly in the compressibility factor. The method provides a new route to assess changes in the free energy landscape at volume fractions dynamically inaccessible to conventional techniques.Comment: 6+17 pages, 3 figure

    Long-Lived Non-Equilibrium Interstitial-Solid-Solutions in Binary Mixtures

    Get PDF
    We perform particle resolved experimental studies on the heterogeneous crystallisation process of two compo- nent mixtures of hard spheres. The components have a size ratio of 0.39. We compared these with molecular dynamics simulations of homogenous nucleation. We find for both experiments and simulations that the final assemblies are interstitial solid solutions, where the large particles form crystalline close-packed lattices, whereas the small particles occupy random interstitial sites. This interstitial solution resembles that found at equilibrium when the size ratios are 0.3 [Filion et al., Phys. Rev. Lett. 107, 168302 (2011)] and 0.4 [Filion, PhD Thesis, Utrecht University (2011)]. However, unlike these previous studies, for our system sim- ulations showed that the small particles are trapped in the octahedral holes of the ordered structure formed by the large particles, leading to long-lived non-equilibrium structures in the time scales studied and not the equilibrium interstitial solutions found earlier. Interestingly, the percentage of small particles in the crystal formed by the large ones rapidly reaches a maximum of around 14% for most of the packing fractions tested, unlike previous predictions where the occupancy of the interstitial sites increases with the system concentration. Finally, no further hopping of the small particles was observed

    Exposure to polychlorinated biphenyls and hexachlorobenzene, semen quality and testicular cancer risk

    Get PDF
    PURPOSE: We carried out a case-control study to investigate the possible role of occupational and environmental exposure to endocrine disruptors in the onset of testicular cancer (TC). METHODS: We evaluated 125 TC patients and 103 controls. Seminal fluid examination and organochlorine analysis were performed in all subjects. Cases and controls were also interviewed using a structured questionnaire to collect demographic information, residence, andrological medical history and dietary information. RESULTS: We found that a higher level of reproductive tract birth defects was associated with a higher risk of TC. With regard to diet, cases reported a higher consumption of milk and dairy products than controls. Overall, there was a statistically significant increase in TC risk in cases with detectable values of total polychlorinated organic compounds against controls (14.4 vs. 1.0 %; p < 0.001). TC patients with detectable levels of organochlorines had lower mean semen parameters than those with undetectable levels, although this difference was not statistically significant. CONCLUSION: The International Agency for Research on Cancer recently included dioxin-like polychlorinated biphenyls (PCBs) in Group 1 of known human carcinogens. Our study confirmed and identified various risk factors for testicular cancer: cryptorchidism, consumption of milk and dairy products, parents' occupation and serum concentration of hexachlorobenzene and PCBs and, for the first time, we showed the correlation between semen quality and the serum concentration of these pollutants

    UAV Thermal Infrared Remote Sensing of an Italian Mud Volcano

    Get PDF
    Extreme environments like active volcanoes exhibit many difficulties in being studied by in situ techniques. For exam-ple, during eruptions, summit areas are very hard to be accessed because of logistics problems and/or volcanic hazards. The use of remote sensing techniques in the last 20 years by satellite or airborne platforms has proven their capabilities in mapping and monitoring the evolution of volcanic activity. This approach has become increasingly important, as much interest is actually focused on understanding precursory signals to volcanic eruptions. In this work we verify the use of cutting-edge technology like unmanned flying system thermally equipped for volcanic applications. We present the results of a flight test performed by INGV in collaboration with the University of Bologna (Aerospace Division) by using a multi-rotor aircraft in a hexacopter configuration. The experiment was realized in radio controlled mode to overcome many regulation problems which, especially in Italy, limit the use of this system in autonomous mode. The overall goal was not only qualitative but also quantitative oriented. The system flew above an Italian mud volcano, named Le Salinelle, located on the lower South West flank of Mt. Etna volcano, which was chosen as representative site, providing not only a discrimination between hot and cold areas, but also the corresponding temperature values. The in-flight measurements have been cross-validated with contemporaneous in-situ acquisition of thermal data and from independent measurements of mud/water temperature

    Many-body correlations from integral geometry

    Get PDF
    In a recent letter we presented a framework for predicting the concentrations of many-particle local structures inside the bulk liquid as a route to assessing changes in the liquid approaching dynamical arrest. Central to this framework was the morphometric approach, a synthesis of integral geometry and liquid state theory, which has traditionally been derived from fundamental measure theory. We present the morphometric approach in a new context as a generalisation of scaled particle theory, and derive several morphometric theories for hard spheres of fundamental and practical interest. Our central result is a new theory which is particularly suited to the treatment of many-body correlation functions in the hard sphere liquid, which we demonstrate by numerical tests against simulation.Comment: 12 pages, 6 figure
    • …
    corecore