167 research outputs found
α1-Antitrypsin Polymerizes in Alveolar Macrophages of Smokers With and Without α1-Antitrypsin Deficiency
BACKGROUND: The deficiency of α1-antitrypsin (AAT) is secondary to misfolding and polymerization of the abnormal Z-AAT in liver cells and is associated with lung emphysema. Alveolar macrophages (AM) produce AAT, however it is not known if Z-AAT can polymerize in AM, further decreasing lung AAT and promoting lung inflammation. AIMS: To investigate if AAT polymerizes in human AM and to study the possible relation between polymerization and degree of lung inflammation. METHODS: Immunohistochemical analysis with 2C1 monoclonal antibody specific for polymerized AAT was performed in sections of: 9 lungs from individuals with AAT deficiency (AATD) and severe COPD, 35 smokers with normal AAT levels of which 24 with severe COPD and 11 without COPD, and 13 non-smokers. AM positive for AAT polymers were counted and expressed as percentage of total AM in lung. RESULTS: AAT polymerization was detected in [27(4-67)%] of AM from individuals with AATD but also in AM from smokers with normal AAT with [24(0-70)%] and without [24(0-60)%] COPD, but not in AM from non-smokers [0(0-1.5)%] (p<0.0001). The percentage of AM with polymerized AAT correlated with pack-years smoked (r=0.53,p=0.0001), FEV1/FVC (r=-0.41,p=0.005), Small Airways Disease (r=0.44,p=0.004), number of CD8+T-cells and neutrophils in alveolar walls (r=0.51,p=0.002; r=0.31,p=0.05 respectively). CONCLUSIONS: Polymerization of AAT in alveolar macrophages occurs in lungs of individuals with AATD but also in smokers with normal AAT levels with or without COPD. Our findings highlight the similarities in the pathophysiology of COPD in individuals with and without AATD, adding a potentially important step to the mechanism of COPD
Enhanced effector function of cytotoxic cells in the induced sputum of COPD patients
<p>Abstract</p> <p>Background</p> <p>We have previously shown that NK (CD56<sup>+</sup>CD3<sup>-</sup>) and NKT-like (CD56<sup>+</sup>CD3<sup>+</sup>) cells are reduced in both numbers and cytotoxicity in peripheral blood. The aim of the present study was to investigate their numbers and function within induced sputum.</p> <p>Methods</p> <p>Induced sputum cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD56<sup>+ </sup>cells (NK and NKT-like cells) were used in an LDH release assay to determine cytotoxicity.</p> <p>Results</p> <p>The proportion of NK cells and NKT-like cells in smokers with COPD (COPD subjects) was significantly higher (12.7% and 3%, respectively) than in healthy smokers (smokers) (5.7%, p < 0.01; 1%, p < 0.001) and non-smoking healthy subjects (HNS) (4.2%, p < 0.001; 0.8%, p < 0.01). The proportions of NK cells and NKT-like cells expressing <it>both </it>perforin <it>and </it>granzyme B were also significantly higher in COPD subjects compared to smokers and HNS. CD56<sup>+ </sup>cells from COPD subjects were significantly more cytotoxic (1414 biological lytic activity) than those from smokers (142.5; p < 0.01) and HNS (3.8; p < 0.001) and were inversely correlated to FEV<sub>1</sub>. (r = -0.75; p = 0.0098).</p> <p>Conclusion</p> <p>We have shown an increased proportion of NK and NKT-like cells in the induced sputum of COPD subjects and have demonstrated that these cells are significantly more cytotoxic in COPD subjects than smokers and HNS.</p
Leukocytes Are Recruited through the Bronchial Circulation to the Lung in a Spontaneously Hypertensive Rat Model of COPD
Chronic obstructive pulmonary disease (COPD) kills approximately 2.8 million people each year, and more than 80% of COPD cases can be attributed to smoking. Leukocytes recruited to the lung contribute to COPD pathology by releasing reactive oxygen metabolites and proteolytic enzymes. In this work, we investigated where leukocytes enter the lung in the early stages of COPD in order to better understand their effect as a contributor to the development of COPD. We simultaneously evaluated the parenchyma and airways for neutrophil accumulation, as well as increases in the adhesion molecules and chemokines that cause leukocyte recruitment in the early stages of tobacco smoke induced lung disease. We found neutrophil accumulation and increased expression of adhesion molecules and chemokines in the bronchial blood vessels that correlated with the accumulation of leukocytes recovered from the lung. The expression of adhesion molecules and chemokines in other vascular beds did not correlate with leukocytes recovered in bronchoalveolar lavage fluid (BALF). These data strongly suggest leukocytes are recruited in large measure through the bronchial circulation in response to tobacco smoke. Our findings have important implications for understanding the etiology of COPD and suggest that pharmaceuticals designed to reduce leukocyte recruitment through the bronchial circulation may be a potential therapy to treat COPD
Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD
<p>Abstract</p> <p>Background</p> <p>Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study macrophage heterogeneity using the M2-marker CD163 and selected pro- and anti-inflammatory mediators in bronchoalveolar lavage (BAL) fluid and induced sputum from current smokers and ex-smokers with COPD.</p> <p>Methods</p> <p>114 COPD patients (72 current smokers; 42 ex-smokers, median smoking cessation 3.5 years) were studied cross-sectionally and underwent sputum induction (M/F 99/15, age 62 ± 8 [mean ± SD] years, 42 (31-55) [median (range)] packyears, post-bronchodilator FEV<sub>1 </sub>63 ± 9% predicted, no steroids past 6 months). BAL was collected from 71 patients. CD163<sup>+ </sup>macrophages were quantified in BAL and sputum cytospins. Pro- and anti-inflammatory mediators were measured in BAL and sputum supernatants.</p> <p>Results</p> <p>Ex-smokers with COPD had a higher percentage, but lower number of CD163<sup>+ </sup>macrophages in BAL than current smokers (83.5% and 68.0%, p = 0.04; 5.6 and 20.1 ×10<sup>4</sup>/ml, p = 0.001 respectively). The percentage CD163<sup>+ </sup>M2 macrophages was higher in BAL compared to sputum (74.0% and 30.3%, p < 0.001). BAL M-CSF levels were higher in smokers than ex-smokers (571 pg/ml and 150 pg/ml, p = 0.001) and correlated with the number of CD163<sup>+ </sup>BAL macrophages (Rs = 0.38, p = 0.003). No significant differences were found between smokers and ex-smokers in the levels of pro-inflammatory (IL-6 and IL-8), and anti-inflammatory (elafin, and Secretory Leukocyte Protease Inhibitor [SLPI]) mediators in BAL and sputum.</p> <p>Conclusions</p> <p>Our data suggest that smoking cessation partially changes the macrophage polarization <it>in vivo </it>in the periphery of the lung towards an anti-inflammatory phenotype, which is not accompanied by a decrease in inflammatory parameters.</p
- …