268 research outputs found

    What to avoid to succeed as an entrepreneur

    Full text link
    [ES] El emprendimiento es motor del crecimiento económico y del desarrollo. En esta investigación se resalta la importancia del emprendimiento en los países emergentes, detallando algunas de las particularidades de los emprendedores de este tipo de regiones. En particular, se observa qué no ha de hacer un emprendedor cuyo objetivo es tener éxito en Latinoamérica. Para ello, se analizan los efectos del asesoramiento formal e informal, del nivel educativo del emprendedor, del grado de innovación de la empresa creada y de variables demográficas como el género y la edad del emprendedor sobre el fracaso empresarial para el caso de El Salvador, uno de los países latinoamericanos con menor índice de éxito empresarial. Mediante el uso de la base de datos del GEM 2012 y de la metodología csQCA, se observa que tanto la innovación como el asesoramiento de profesionales y la educación juegan un papel esencial en el éxito de la empresa.[EN] Entrepreneurship is a driver of economic growth and development. This paper highlights the importance of entrepreneurship in emerging countries and examines characteristics of entrepreneurs in this type of region. In particular, the paper explains what entrepreneurs should strive to avoid if they wish to succeed in Latin America. To do so, an empirical study analyzes the effects of factors that relate to businesses and entrepreneurs in El Salvador, one of the Latin American countries with the lowest rates of business success. In the study, business factors consist of the use of formal and informal advisory services, and degree of innovation. Variables that relate to the entrepreneur are educational attainment, and the demographic variables gender and age. Results from analysis of 2012 GEM data using csQCA methodology show that degree of innovation, advisory services of professionals, and educational attainment play key roles in business success.Mas-Tur, A.; Pinazo-Dallenbach, P.; Tur-Porcar, AM.; Sánchez-Masferrer, M. (2015). What to avoid to succeed as an entrepreneur. Journal of Business Research. 68(11):2279-2284. https://doi.org/10.1016/j.jbusres.2015.06.01122792284681

    What to avoid to succeed as an entrepreneur

    Get PDF
    Entrepreneurship is a driver of economic growth and development. This study highlights the importance of entrepreneurship in emerging countries and examines entrepreneurs' characteristics in these countries. In particular, the study explains what entrepreneurs should avoid to succeed in Latin America. An empirical study analyzes factors that relate to businesses and entrepreneurs in El Salvador, one of the Latin American countries with the lowest rates of business success. In the study, business factors consist of the use of formal and informal advisory services and the degree of innovation. Variables that relate to the entrepreneur are educational attainment and the demographic variables sex and age. Results from analysis of 2012 GEM data using csQCA methodology show that degree of innovation, professional advisory services, and educational attainment play key roles in business success

    Superconvergent patch recovery with constraints for three-dimensional contact problems within the Cartesian grid Finite Element Method

    Full text link
    "This is the peer reviewed version of the following article: Navarro-Jiménez, José M., Héctor Navarro-García, Manuel Tur, and Juan J. Ródenas. 2019. Superconvergent Patch Recovery with Constraints for Three-dimensional Contact Problems within the Cartesian Grid Finite Element Method. International Journal for Numerical Methods in Engineering 121 (6). Wiley: 1297 1313. doi:10.1002/nme.6266, which has been published in final form at https://doi.org/10.1002/nme.6266. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] The superconvergent patch recovery technique with constraints (SPR-C) consists in improving the accuracy of the recovered stresses obtained with the original SPR technique by considering known information about the exact solution, like the internal equilibrium equation, the compatibility equation or the Neumann boundary conditions, during the recovery process. In this paper the SPR-C is extended to consider the equilibrium around the contact area when solving contact problems with the Cartesian grid Finite Element Method. In the proposed method, the Finite Element stress fields of both bodies in contact are considered during the recovery process and the equilibrium is enforced by means of the continuity of tractions along the contact surface.The authors would like to thank Generalitat Valenciana (PROMETEO/2016/007), the Spanish Ministerio de Economía, Industria y Competitividad (DPI2017-89816-R), the Spanish Ministerio de Ciencia, Innovación y Universidades (FPU17/03993), and Universitat Politècnica de València (FPI2015) for the financial support to this work.Navarro-Jiménez, J.; Navarro-García, H.; Tur Valiente, M.; Ródenas, JJ. (2020). Superconvergent patch recovery with constraints for three-dimensional contact problems within the Cartesian grid Finite Element Method. International Journal for Numerical Methods in Engineering. 121(6):1297-1313. https://doi.org/10.1002/nme.6266S129713131216Wriggers, P. (2006). Computational Contact Mechanics. doi:10.1007/978-3-540-32609-0Marco, O., Sevilla, R., Zhang, Y., Ródenas, J. J., & Tur, M. (2015). Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. International Journal for Numerical Methods in Engineering, 103(6), 445-468. doi:10.1002/nme.4914Navarro-Jiménez, J. M., Tur, M., Albelda, J., & Ródenas, J. J. (2018). Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics, 62(4), 853-870. doi:10.1007/s00466-017-1533-xMarco, O., Ródenas, J. J., Navarro-Jiménez, J. M., & Tur, M. (2017). Robust h-adaptive meshing strategy considering exact arbitrary CAD geometries in a Cartesian grid framework. Computers & Structures, 193, 87-109. doi:10.1016/j.compstruc.2017.08.004Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery (SPR) and adaptive finite element refinement. Computer Methods in Applied Mechanics and Engineering, 101(1-3), 207-224. doi:10.1016/0045-7825(92)90023-dRódenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837Nadal, E., Díez, P., Ródenas, J. J., Tur, M., & Fuenmayor, F. J. (2015). A recovery-explicit error estimator in energy norm for linear elasticity. Computer Methods in Applied Mechanics and Engineering, 287, 172-190. doi:10.1016/j.cma.2015.01.013Badia, S., Verdugo, F., & Martín, A. F. (2018). The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering, 336, 533-553. doi:10.1016/j.cma.2018.03.022Zienkiewicz, O. C., Zhu, J. Z., & Wu, J. (1993). Superconvergent patch recovery techniques - some further tests. Communications in Numerical Methods in Engineering, 9(3), 251-258. doi:10.1002/cnm.1640090309FUENMAYOR, F. J., & OLIVER, J. L. (1996). CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD. International Journal for Numerical Methods in Engineering, 39(23), 4039-4061. doi:10.1002/(sici)1097-0207(19961215)39:233.0.co;2-cBabuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-

    Large deformation frictional contact analysis with immersed boundary method

    Full text link
    [EN] This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth stress field as stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery. The parametric definition of the CAD surfaces (usually NURBS) is considered in the definition of the contact kinematics in order to obtain an enhanced measure of the contact gap. The numerical examples show the performance of the method.The authors wish to thank the Spanish Ministerio de Economia y Competitividad the Generalitat Valenciana and the Universitat Politecnica de Valencia for their financial support received through the projects DPI2013-46317-R, Prometeo 2016/007 and the FPI2015 program.Navarro-Jiménez, J.; Tur Valiente, M.; Albelda Vitoria, J.; Ródenas, JJ. (2018). Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics. 62(4):853-870. https://doi.org/10.1007/s00466-017-1533-xS853870624ANSYS®^{\textregistered }® Academic Research Mechanical, Release 16.2Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375. https://doi.org/10.1016/0045-7825(91)90022-XAnnavarapu C, Hautefeuille M, Dolbow JE (2012) Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int J Numer Methods Eng 92(June):206–228. https://doi.org/10.1002/nme.4343Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng 268:417–436. https://doi.org/10.1016/j.cma.2013.09.002Annavarapu C, Settgast RR, Johnson SM, Fu P, Herbold EB (2015) A weighted nitsche stabilized method for small-sliding contact on frictional surfaces. Comput Methods Appl Mech Eng 283:763–781. https://doi.org/10.1016/j.cma.2014.09.030Baiges J, Codina R, Henke F, Shahmiri S, Wall WA (2012) A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int J Numer Methods Eng 90(5):636–658. https://doi.org/10.1002/nme.3339Béchet É, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78(8):931–954. https://doi.org/10.1002/nme.2515Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954. https://doi.org/10.1002/nme.2515Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271. https://doi.org/10.1016/S0895-7177(98)00121-6De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20. https://doi.org/10.1007/s00466-011-0623-4Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric Analysis and thermomechanical Mortar contact problems. Comput Methods Appl Mech Eng 274:192–212. https://doi.org/10.1016/j.cma.2014.02.012Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190:6825–6846. https://doi.org/10.1016/S0045-7825(01)00260-2Dolbow JE, Devan a (2004) Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test. Int J Numer Methods Eng 59(1):47–67. https://doi.org/10.1002/nme.862Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37–40):5020–5036. https://doi.org/10.1016/j.cma.2005.09.025Giovannelli L, Ródenas J, Navarro-Jiménez J, Tur M (2017) Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elem Anal Des. https://doi.org/10.1016/j.finel.2017.07.010Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng. https://doi.org/10.1002/nme.2907Hammer ME (2013) Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Comput Mech 51(6):975–998. https://doi.org/10.1007/s00466-012-0780-0Hansbo P, Rashid A, Salomonsson K (2015) Least-squares stabilized augmented Lagrangian multiplier method for elastic contact. Finite Elem Anal Des 116:32–37. https://doi.org/10.1016/j.finel.2016.03.005Haslinger J, Renard Y (2009) A new fictitious domain approach inspired by the extended finite element method. SIAM J Numer Anal 47(2):1474–1499. https://doi.org/10.1137/070704435Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90:40–64. https://doi.org/10.1002/nme.3306Heintz P, Hansbo P (2006) Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng 195(33–36):4323–4333. https://doi.org/10.1016/j.cma.2005.09.008Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195. https://doi.org/10.1016/j.cma.2004.10.008Laursen T (2003) Computational contact and impact mechanics: fundamentals of modelling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinLiu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng 76(June):1489–1512. https://doi.org/10.1002/nme.2376Liu F, Borja RI (2010) Stabilized low-order finite elements for frictional contact with the extended finite element method. Comput Methods Appl Mech Eng 199(37–40):2456–2471. https://doi.org/10.1016/j.cma.2010.03.030Marco O, Sevilla R, Zhang Y, Ródenas JJ, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103(6):445–468. https://doi.org/10.1002/nme.4914Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor FJ (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal 2013:1–19. https://doi.org/10.1155/2013/953786Neto D, Oliveira M, Menezes L, Alves J (2016) A contact smoothing method for arbitrary surface meshes using nagata patches. Comput Methods Appl Mech Eng 299:283–315. https://doi.org/10.1016/j.cma.2015.11.011Nistor I, Guiton MLE, Massin P, Moës N, Géniaut S (2009) An X-FEM approach for large sliding contact along discontinuities. Int J Numer Methods Eng 78:1407–1435. https://doi.org/10.1002/nme.2532Oliver J, Hartmann S, Cante JC, Weyler R, Hernández JA (2009) A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Comput Methods Appl Mech Eng 198:2591–2606. https://doi.org/10.1016/j.cma.2009.03.006Piegl L, Tiller W (1995) The NURBS Book. Springer, BerlinPietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comput Methods Appl Mech Eng 177(3–4):351–381. https://doi.org/10.1016/S0045-7825(98)00388-0Poulios K, Renard Y (2015) An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput Struct 153:75–90. https://doi.org/10.1016/j.compstruc.2015.02.027Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45–47):4891–4913. https://doi.org/10.1016/j.cma.2004.06.001Renard Y (2013) Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput Methods Appl Mech Eng 256:38–55. https://doi.org/10.1016/j.cma.2012.12.008Ribeaucourt R, Baietto-Dubourg MC, Gravouil A (2007) A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method. Comput Methods Appl Mech Eng 196:3230–3247. https://doi.org/10.1016/j.cma.2007.03.004Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: The SPR-C technique. Int J Numer Methods Eng 70:705–727. https://doi.org/10.1002/nme.1903Rogers DF (2001) An introduction to NURBS: with historical perspective. Elsevier, AmsterdamTemizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128. https://doi.org/10.1016/j.cma.2011.10.014Tur M, Albelda J, Marco O, Ródenas JJ (2015) Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Comput Methods Appl Mech Eng 296:352–375. https://doi.org/10.1016/j.cma.2015.08.001Tur M, Albelda J, Navarro-Jimenez JM, Rodenas JJ (2015) A modified perturbed Lagrangian formulation for contact problems. Comput Mech. https://doi.org/10.1007/s00466-015-1133-6Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198(37–40):2860–2873. https://doi.org/10.1016/j.cma.2009.04.007Tur M, Giner E, Fuenmayor F, Wriggers P (2012) 2d contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng 247–248:1–14. https://doi.org/10.1016/j.cma.2012.08.002Wriggers P (2006) Computational contact mechanics. Springer, BerlinWriggers P (2008) Nonlinear finite element methods. Springer, Berlin. https://doi.org/10.1007/978-3-540-71001-1Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225. https://doi.org/10.1002/nme.1222Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods. https://doi.org/10.1002/nme.162033070

    Robust h-adaptive meshing strategy considering exact arbitrary CAD geometries in a Cartesian grid framework

    Full text link
    [EN] Geometry plays a key role in contact and shape optimization problems in which the accurate representation of the exact geometry and the use of adaptive analysis techniques are crucial to obtaining accurate computationally-efficient Finite Element (FE) simulations. We propose a novel algorithm to generate 3D h-adaptive meshes for an Immersed Boundary Method (IBM) based on Cartesian grids and the so-called NEFEM (NURBS-Enhanced FE Method) integration techniques. To increase the accuracy of the results at the minimum computational cost we seek to keep the efficient Cartesian structure of the mesh during the whole analysis process while considering the exact boundary representation of domains given by NURBS or T-Splines. Within the framework of Cartesian grids, the two significant contributions of this paper are: (a) the methodology used for the mesh-geometry intersection, which represents a considerable challenge due to their independence; and (b) the robust procedure used to generate the integration subdomains that exactly represent the CAD model. The numerical examples given show the proper convergence of the method, its capacity to mesh complex 3D geometries and that Cartesian grid-based IBM can be considered a robust and reliable tool in terms of accuracy and computational cost.The authors wish to thank the Spanish Ministerio de Economia y Competitividad for the financial support received through Project DPI2013-46317-R and the FPI program (BES-2011-044080), also the Generalitat Valenciana for the assistance received through Project PROMETEO/2016/007.Marco, O.; Ródenas, J.; Navarro-Jiménez, J.; Tur Valiente, M. (2017). Robust h-adaptive meshing strategy considering exact arbitrary CAD geometries in a Cartesian grid framework. Computers & Structures. 193:87-109. doi:10.1016/j.compstruc.2017.08.004S8710919

    Direct medical image-based Finite Element modelling for patient-specific simulation of future implants

    Full text link
    [EN] In patient specific biomedical simulation, the numerical model is usually created after cumbersome, time consuming procedures which often require highly specialized human work and a great amount of man-hours to be carried out. In order to make numerical simulation available for medical practice, it is of primary importance to reduce the cost associated to these procedures by making them automatic. In this paper a method for the automatic creation of Finite Element (FE) models from medical images is presented. This method is based on the use of a hierarchical structure of nested Cartesian grids in which the medical image is immersed. An efficient h-adaptive procedure conforms the FE model to the image characteristics by refining the mesh on the basis of the distribution of elastic properties associated to the pixel values. As a result, a problem with a reasonable number of degrees of freedom is obtained, skipping the geometry creation stage. All the image information is taken into account during the calculation of the element stiffness matrix, therefore it is straightforward to include the material heterogeneity in the simulation. The proposed method is an adapted version of the Cartesian grid Finite Element Method (cgFEM) for the FE analysis of objects defined by images. cgFEM is an immersed boundary method that uses h-adaptive Cartesian meshes non-conforming to the boundary of the object to be analysed. The proposed methodology, used together with the original geometry-based cgFEM, allows prosthesis geometries to be easily introduced in the model providing a useful tool for evaluating the effect of future implants in a preoperative framework. The potential of this kind of technology is presented by mean of an initial implementation in 2D and 3D for linear elasticity problems.With the support of the European Union Framework Programme (FP7) under grant agreement No. 289361 'Integrating Numerical Simulation and Geometric Design Technology (INSIST)', the Ministerio de Economia y Competitividad of Spain (DPI2010-20542) and the Generalitat Valenciana (PROMETEO/2016/007).Giovannelli, L.; Ródenas, J.; Navarro-Jiménez, J.; Tur Valiente, M. (2017). Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elements in Analysis and Design. 136:37-57. https://doi.org/10.1016/j.finel.2017.07.010S375713

    On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers

    Full text link
    "This is the peer reviewed version of the following article: Navarro-Jiménez, José Manuel, Enrique Nadal, Manuel Tur, José Martínez-Casas, and Juan José Ródenas. 2020. "On the Use of Stabilization Techniques in the Cartesian Grid Finite Element Method Framework for Iterative Solvers." International Journal for Numerical Methods in Engineering 121 (13). Wiley: 3004-20. doi:10.1002/nme.6344, which has been published in final form at https://doi.org/10.1002/nme.6344. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Fictitious domain methods, like the Cartesian grid finite element method (cgFEM), are based on the use of unfitted meshes that must be intersected. This may yield to ill-conditioned systems of equations since the stiffness associated with a node could be small, thus poorly contributing to the energy of the problem. This issue complicates the use of iterative solvers for large problems. In this work, we present a new stabilization technique that, in the case of cgFEM, preserves the Cartesian structure of the mesh. The formulation consists in penalizing the free movement of those nodes by a smooth extension of the solution from the interior of the domain, through a postprocess of the solution via a displacement recovery technique. The numerical results show an improvement of the condition number and a decrease in the number of iterations of the iterative solver while preserving the problem accuracy.The authors wish to thank the Spanish "Ministerio de Economía y Competitividad," the "Generalitat Valenciana," and the "Universitat Politècnica de València" for their financial support received through the projects DPI2017-89816-R, Prometeo 2016/007 and the FPI2015 program, respectively.Navarro-Jiménez, J.; Nadal, E.; Tur Valiente, M.; Martínez Casas, J.; Ródenas, JJ. (2020). On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers. International Journal for Numerical Methods in Engineering. 121(13):3004-3020. https://doi.org/10.1002/nme.6344S3004302012113Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011Ruiz-Gironés, E., & Sarrate, J. (2010). Generation of structured hexahedral meshes in volumes with holes. Finite Elements in Analysis and Design, 46(10), 792-804. doi:10.1016/j.finel.2010.04.005Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579Parvizian, J., Düster, A., & Rank, E. (2007). Finite cell method. Computational Mechanics, 41(1), 121-133. doi:10.1007/s00466-007-0173-yDüster, A., Parvizian, J., Yang, Z., & Rank, E. (2008). The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering, 197(45-48), 3768-3782. doi:10.1016/j.cma.2008.02.036Nadal, E., Ródenas, J. J., Albelda, J., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2013). Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization. Abstract and Applied Analysis, 2013, 1-19. doi:10.1155/2013/953786Nadal, E., Ródenas, J. J., Sánchez-Orgaz, E. M., López-Real, S., & Martí-Pellicer, J. (2014). Sobre la utilización de códigos de elementos finitos basados en mallados cartesianos en optimización estructural. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 155-165. doi:10.1016/j.rimni.2013.04.009Giovannelli, L., Ródenas, J. J., Navarro-Jiménez, J. M., & Tur, M. (2017). Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elements in Analysis and Design, 136, 37-57. doi:10.1016/j.finel.2017.07.010Schillinger, D., & Ruess, M. (2014). The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Archives of Computational Methods in Engineering, 22(3), 391-455. doi:10.1007/s11831-014-9115-yBurman, E., Claus, S., Hansbo, P., Larson, M. G., & Massing, A. (2014). CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7), 472-501. doi:10.1002/nme.4823Tur, M., Albelda, J., Marco, O., & Ródenas, J. J. (2015). Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Computer Methods in Applied Mechanics and Engineering, 296, 352-375. doi:10.1016/j.cma.2015.08.001Tur, M., Albelda, J., Nadal, E., & Ródenas, J. J. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 98(6), 399-417. doi:10.1002/nme.4629De Prenter, F., Verhoosel, C. V., van Zwieten, G. J., & van Brummelen, E. H. (2017). Condition number analysis and preconditioning of the finite cell method. Computer Methods in Applied Mechanics and Engineering, 316, 297-327. doi:10.1016/j.cma.2016.07.006Berger-Vergiat, L., Waisman, H., Hiriyur, B., Tuminaro, R., & Keyes, D. (2011). Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods. International Journal for Numerical Methods in Engineering, 90(3), 311-328. doi:10.1002/nme.3318Menk, A., & Bordas, S. P. A. (2010). A robust preconditioning technique for the extended finite element method. International Journal for Numerical Methods in Engineering, 85(13), 1609-1632. doi:10.1002/nme.3032Dauge, M., Düster, A., & Rank, E. (2015). Theoretical and Numerical Investigation of the Finite Cell Method. Journal of Scientific Computing, 65(3), 1039-1064. doi:10.1007/s10915-015-9997-3Elfverson, D., Larson, M. G., & Larsson, K. (2018). CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences, 5(1). doi:10.1186/s40323-018-0099-2Verhoosel, C. V., van Zwieten, G. J., van Rietbergen, B., & de Borst, R. (2015). Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Computer Methods in Applied Mechanics and Engineering, 284, 138-164. doi:10.1016/j.cma.2014.07.009Burman, E. (2010). Ghost penalty. Comptes Rendus Mathematique, 348(21-22), 1217-1220. doi:10.1016/j.crma.2010.10.006BadiaS VerdugoF MartínAF. The aggregated unfitted finite element method for elliptic problems;2017.Jomo, J. N., de Prenter, F., Elhaddad, M., D’Angella, D., Verhoosel, C. V., Kollmannsberger, S., … Rank, E. (2019). Robust and parallel scalable iterative solutions for large-scale finite cell analyses. Finite Elements in Analysis and Design, 163, 14-30. doi:10.1016/j.finel.2019.01.009Béchet, É., Moës, N., & Wohlmuth, B. (2008). A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. International Journal for Numerical Methods in Engineering, 78(8), 931-954. doi:10.1002/nme.2515Hautefeuille, M., Annavarapu, C., & Dolbow, J. E. (2011). Robust imposition of Dirichlet boundary conditions on embedded surfaces. International Journal for Numerical Methods in Engineering, 90(1), 40-64. doi:10.1002/nme.3306Hansbo, P., Lovadina, C., Perugia, I., & Sangalli, G. (2005). A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numerische Mathematik, 100(1), 91-115. doi:10.1007/s00211-005-0587-4Burman, E., & Hansbo, P. (2012). Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Applied Numerical Mathematics, 62(4), 328-341. doi:10.1016/j.apnum.2011.01.008Gerstenberger, A., & Wall, W. A. (2008). An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 197(19-20), 1699-1714. doi:10.1016/j.cma.2007.07.002AxelssonO. Iterative solution methods;1994.Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics, 63(1-3), 139-148. doi:10.1016/0377-0427(95)00057-7Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837Xiao, Q. Z., & Karihaloo, B. L. (s. f.). Statically Admissible Stress Recovery using the Moving Least Squares Technique. Progress in Computational Structures Technology, 111-138. doi:10.4203/csets.11.5Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903Zhang, Z. (2001). Advances in Computational Mathematics, 15(1/4), 363-374. doi:10.1023/a:1014221409940González-Estrada, O. A., Nadal, E., Ródenas, J. J., Kerfriden, P., Bordas, S. P. A., & Fuenmayor, F. J. (2013). Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Computational Mechanics, 53(5), 957-976. doi:10.1007/s00466-013-0942-8Nadal, E., Díez, P., Ródenas, J. J., Tur, M., & Fuenmayor, F. J. (2015). A recovery-explicit error estimator in energy norm for linear elasticity. Computer Methods in Applied Mechanics and Engineering, 287, 172-190. doi:10.1016/j.cma.2015.01.013ZienkiewiczOC TaylorRL. The finite element method fifth edition volume 1: the basis.MA:Butterworth‐Heinemann;2000.Brenner, S. C., & Scott, L. R. (1994). The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. doi:10.1007/978-1-4757-4338-

    Simulation of the contact wire wear evolution in high speed overhead contact lines

    Full text link
    [EN] The overhead contact line or catenary is the structure composed of support elements and wires responsible for the power supply of the locomotive through sliding contact with the pantograph. This contact causes wear not only on the pantograph contact strips but also in the contact wire, which produces a reduction on its effective section and eventually its replacement, resulting in the stoppage of the rolling stock with its associate economical and operational drawbacks. For this reason, it is important for catenary designers to count with appropriate tools able to predict the contact wire wear behaviour for extending the service life of the system. This work proposes a strategy to simulate the long-term contact wire wear evolution considering the mutual influence between the dynamic behaviour and wear of the system. The method is based on two pillars: the efficient simulation of the catenary-pantograph dynamic interaction and a heuristic wear model which considers mechanical wear due to friction and electrical wear produced by Joule effect and electric arcs. With the proposed simulation tool, we analyse the effect on the long-term contact wire worn height of the train speed.The authors would like to acknowledge the financial support received from the Spanish Ministry of Economy, Industry and Competitiveness (TRA2017-84736-R).Gregori, S.; Gil, J.; Tur, M.; Pedrosa, A.; Fuenmayor, FJ. (2022). Simulation of the contact wire wear evolution in high speed overhead contact lines. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 295-303. https://doi.org/10.4995/YIC2021.2021.12566OCS29530

    3D analysis of the influence of specimen dimensions on fretting stresses

    Full text link
    [EN] In this paper, the contact conditions and stresses that arise in a fretting test have been analyzed by means of a three-dimensional finite element model of the contact between a sphere and a flat surface. An h-adaptive process, based on element subdivision, has been used in order to obtain a low discretization error at a reasonable computational cost. The influence of finite dimensions of the specimen in the stress fields has been evaluated. The results have been compared with the classical Cattaneo-Mindlin solution.The authors wish to thank the financial support received from CICYT by means of the project PB97-0696-C02-02.Tur Valiente, M.; Fuenmayor Fernández, F.; J.J. Ródenas; Giner Maravilla, E. (2003). 3D analysis of the influence of specimen dimensions on fretting stresses. Finite Elements in Analysis and Design. 39(10):933-949. https://doi.org/10.1016/S0168-874X(02)00139-7S933949391

    An approach to geometric optimisation of railway catenaries

    Full text link
    [EN] The quality of current collection becomes a limiting factor when the aim is to increase the speed of the present railway systems. In this work an attempt is made to improve current collection quality optimising catenary geometry by means of a genetic algorithm (GA). As contact wire height and dropper spacing are thought to be highly influential parameters, they are chosen as the optimisation variables. The results obtained show that a GA can be used to optimise catenary geometry to improve current collection quality measured in terms of the standard deviation of the contact force. Furthermore, it is highlighted that apart from the usual pre-sag, other geometric parameters should also be taken into account when designing railway catenaries.The authors would like to acknowledge the financial support received from the FPU program offered by the Ministerio de Educación, Cultura y Deporte (MECD), under grant number [FPU13/04191], and also the funding provided by the Generalitat Valenciana [PROMETEO/2016/007].Gregori Verdú, S.; Tur Valiente, M.; Nadal, E.; Fuenmayor Fernández, F. (2017). An approach to geometric optimisation of railway catenaries. Vehicle System Dynamics. 1-25. https://doi.org/10.1080/00423114.2017.1407434S125Nåvik, P., Rønnquist, A., & Stichel, S. (2015). The use of dynamic response to evaluate and improve the optimization of existing soft railway catenary systems for higher speeds. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4), 1388-1396. doi:10.1177/0954409715605140Harèll, P., Drugge, L., & Reijm, M. (2005). Study of Critical Sections in Catenary Systems During Multiple Pantograph Operation. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219(4), 203-211. doi:10.1243/095440905x8934Bruni, S., Ambrosio, J., Carnicero, A., Cho, Y. H., Finner, L., Ikeda, M., … Zhang, W. (2014). The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics, 53(3), 412-435. doi:10.1080/00423114.2014.953183Shabana, A. A. (1998). Nonlinear Dynamics, 16(3), 293-306. doi:10.1023/a:1008072517368Zhou, N., & Zhang, W. (2011). Investigation on dynamic performance and parameter optimization design of pantograph and catenary system. Finite Elements in Analysis and Design, 47(3), 288-295. doi:10.1016/j.finel.2010.10.008Kim, J.-W., & Yu, S.-N. (2013). Design variable optimization for pantograph system of high-speed train using robust design technique. International Journal of Precision Engineering and Manufacturing, 14(2), 267-273. doi:10.1007/s12541-013-0037-7Ambrósio, J., Pombo, J., & Pereira, M. (2013). Optimization of high-speed railway pantographs for improving pantograph-catenary contact. Theoretical and Applied Mechanics Letters, 3(1), 013006. doi:10.1063/2.1301306Lee, J.-H., Kim, Y.-G., Paik, J.-S., & Park, T.-W. (2012). Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train. Journal of Mechanical Science and Technology, 26(10), 3253-3260. doi:10.1007/s12206-012-0833-5Massat, J.-P., Laurent, C., Bianchi, J.-P., & Balmès, E. (2014). Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Vehicle System Dynamics, 52(sup1), 338-354. doi:10.1080/00423114.2014.898780Cho, Y. H., Lee, K., Park, Y., Kang, B., & Kim, K. (2010). Influence of contact wire pre-sag on the dynamics of pantograph–railway catenary. International Journal of Mechanical Sciences, 52(11), 1471-1490. doi:10.1016/j.ijmecsci.2010.04.002Zhang, W., Mei, G., & Zeng, J. (2002). A Study of Pantograph/Catenary System Dynamics with Influence of Presag and Irregularity of Contact Wire. Vehicle System Dynamics, 37(sup1), 593-604. doi:10.1080/00423114.2002.11666265Koziel, S., & Yang, X.-S. (Eds.). (2011). Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence. doi:10.1007/978-3-642-20859-1Hare, W., Nutini, J., & Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19-28. doi:10.1016/j.advengsoft.2013.03.001Tur, M., Baeza, L., Fuenmayor, F. J., & García, E. (2014). PACDIN statement of methods. Vehicle System Dynamics, 53(3), 402-411. doi:10.1080/00423114.2014.963126Tur, M., García, E., Baeza, L., & Fuenmayor, F. J. (2014). A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Engineering Structures, 71, 234-243. doi:10.1016/j.engstruct.2014.04.015Gregori, S., Tur, M., Nadal, E., Aguado, J. V., Fuenmayor, F. J., & Chinesta, F. (2017). Fast simulation of the pantograph–catenary dynamic interaction. Finite Elements in Analysis and Design, 129, 1-13. doi:10.1016/j.finel.2017.01.007Gerstmayr, J., & Shabana, A. A. (2006). Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation. Nonlinear Dynamics, 45(1-2), 109-130. doi:10.1007/s11071-006-1856-1Collina, A., & Bruni, S. (2002). Numerical Simulation of Pantograph-Overhead Equipment Interaction. Vehicle System Dynamics, 38(4), 261-291. doi:10.1076/vesd.38.4.261.8286Ambrósio, J., Pombo, J., Antunes, P., & Pereira, M. (2014). PantoCat statement of method. Vehicle System Dynamics, 53(3), 314-328. doi:10.1080/00423114.2014.969283Nåvik, P., Rønnquist, A., & Stichel, S. (2017). Variation in predicting pantograph–catenary interaction contact forces, numerical simulations and field measurements. Vehicle System Dynamics, 55(9), 1265-1282. doi:10.1080/00423114.2017.130852
    corecore