10,639 research outputs found

    Sequential Dialogue Context Modeling for Spoken Language Understanding

    Full text link
    Spoken Language Understanding (SLU) is a key component of goal oriented dialogue systems that would parse user utterances into semantic frame representations. Traditionally SLU does not utilize the dialogue history beyond the previous system turn and contextual ambiguities are resolved by the downstream components. In this paper, we explore novel approaches for modeling dialogue context in a recurrent neural network (RNN) based language understanding system. We propose the Sequential Dialogue Encoder Network, that allows encoding context from the dialogue history in chronological order. We compare the performance of our proposed architecture with two context models, one that uses just the previous turn context and another that encodes dialogue context in a memory network, but loses the order of utterances in the dialogue history. Experiments with a multi-domain dialogue dataset demonstrate that the proposed architecture results in reduced semantic frame error rates.Comment: 8 + 2 pages, Updated 10/17: Updated typos in abstract, Updated 07/07: Updated Title, abstract and few minor change

    Towards Zero-Shot Frame Semantic Parsing for Domain Scaling

    Full text link
    State-of-the-art slot filling models for goal-oriented human/machine conversational language understanding systems rely on deep learning methods. While multi-task training of such models alleviates the need for large in-domain annotated datasets, bootstrapping a semantic parsing model for a new domain using only the semantic frame, such as the back-end API or knowledge graph schema, is still one of the holy grail tasks of language understanding for dialogue systems. This paper proposes a deep learning based approach that can utilize only the slot description in context without the need for any labeled or unlabeled in-domain examples, to quickly bootstrap a new domain. The main idea of this paper is to leverage the encoding of the slot names and descriptions within a multi-task deep learned slot filling model, to implicitly align slots across domains. The proposed approach is promising for solving the domain scaling problem and eliminating the need for any manually annotated data or explicit schema alignment. Furthermore, our experiments on multiple domains show that this approach results in significantly better slot-filling performance when compared to using only in-domain data, especially in the low data regime.Comment: 4 pages + 1 reference

    Culture and cultures in tourism

    Get PDF
    In this special issue of Anatolia, we explore a number of new trends and products related to cultural tourism, searching for a deeper understanding of how culture is becoming a central factor of attraction in tourism. Contributed papers deal with a number of on-going trends in cultural tourism, including the importance of heritage valuing for sustainability of destinations, the raising wave of religious travels in Arab countries recently opening to tourism, or the analysis of interactions between cultural visitors and local residentsThis work was supported by Groups of Excellence Program of Fundación Séneca, Science and Technology Agency of the Region of Murcia [project number 19884/GERM/15

    Morphological Disambiguation by Voting Constraints

    Full text link
    We present a constraint-based morphological disambiguation system in which individual constraints vote on matching morphological parses, and disambiguation of all the tokens in a sentence is performed at the end by selecting parses that receive the highest votes. This constraint application paradigm makes the outcome of the disambiguation independent of the rule sequence, and hence relieves the rule developer from worrying about potentially conflicting rule sequencing. Our results for disambiguating Turkish indicate that using about 500 constraint rules and some additional simple statistics, we can attain a recall of 95-96% and a precision of 94-95% with about 1.01 parses per token. Our system is implemented in Prolog and we are currently investigating an efficient implementation based on finite state transducers.Comment: 8 pages, Latex source. To appear in Proceedings of ACL/EACL'97 Compressed postscript also available as ftp://ftp.cs.bilkent.edu.tr/pub/ko/acl97.ps.
    corecore