617 research outputs found

    Identifying vacancy complexes in compound semiconductors with positron annihilation spectroscopy: a case study of InN

    Get PDF
    We present a comprehensive study of vacancy and vacancy-impurity complexes in InN combining positron annihilation spectroscopy and ab-initio calculations. Positron densities and annihilation characteristics of common vacancy-type defects are calculated using density functional theory and the feasibility of their experimental detection and distinction with positron annihilation methods is discussed. The computational results are compared to positron lifetime and conventional as well as coincidence Doppler broadening measurements of several representative InN samples. The particular dominant vacancy-type positron traps are identified and their characteristic positron lifetimes, Doppler ratio curves and lineshape parameters determined. We find that In vacancies and their complexes with N vacancies or impurities act as efficient positron traps, inducing distinct changes in the annihilation parameters compared to the InN lattice. Neutral or positively charged N vacancies and pure N vacancy complexes on the other hand do not trap positrons. The predominantly introduced positron trap in irradiated InN is identified as the isolated In vacancy, while in as-grown InN layers In vacancies do not occur isolated but complexed with one or more N vacancies. The number of N vacancies per In vacancy in these complexes is found to increase from the near surface region towards the layer-substrate interface.Comment: 10 pages, 6 figure

    Positron trapping kinetics in thermally generated vacancy donor complexes in highly As-doped silicon

    Get PDF
    We have measured positron lifetime and Doppler broadening in highly As-doped silicon containing thermally generated V−As3 defect complexes (vacancy is surrounded by three arsenic atoms). We observe positron detrapping from the V−As3 defect complex and determine the binding energy of 0.27 eV of a positron to the complex. The results explain why 85% of the thermal vacancies formed in highly As-doped Si at temperatures over 700 K are invisible to positron measurements at elevated temperatures.Peer reviewe

    Evidence of a second acceptor state of the E center in Si1-x Gex

    Get PDF
    We have found evidence of a second acceptor state of the E center in Si1-x Gex by using positron annihilation spectroscopy. To achieve this, we studied proton irradiated n-type Si1−x Gex with a Ge content of 10%–30% and a P dopant concentration of 10 exp 18cm exp −3, in which the number of Ge atoms around irradiation induced E centers was increased by annealing. When measuring the Doppler broadening of the annihilation line, the shape parameter S starts to decrease at 150 K with decreasing measurement temperature. This indicates that a charge transition in the upper half of the Si1−x Gex band gap, above the well known (0/−) level, takes place. Hence, we suggest that the increased concentration of germanium around the E center pulls down the localized second acceptor state into the Si1−x Gex band gap, making the Ge decorated E center a more effective trap for conduction electrons.Peer reviewe

    Ga Sublattice Defects in (Ga,Mn)As: Thermodynamical and Kinetic Trends

    Get PDF
    We have used positron annihilation spectroscopy and infrared absorption measurements to study the Ga sublattice defects in epitaxial Ga1−xMnxAs with Mn content varying from 0% to 5%. We show that the Ga vacancy concentration decreases and As antisite concentration increases with increasing Mn content. This is in agreement with thermodynamical considerations for the electronic part of the formation energy of the Ga sublattice point defects. However, the absolute defect concentrations imply that they are determined rather by the growth kinetics than by the thermodynamical equilibrium. The As antisite concentrations in the samples are large enough to be important for compensation and magnetic properites. In addition, the Ga vacancies are likely to be involved in the diffusion and clustering of Mn at low annealing temperatures.Peer reviewe

    Divacancy clustering in neutron-irradiated and annealed n-type germanium

    Get PDF
    We have studied the annealing of vacancy defects in neutron-irradiated germanium. After irradiation, the Sb-doped samples [(Sb)=1.5×10 exp 15 cm exp −3] were annealed at 473, 673, and 773 K for 30 min. The positron lifetime was measured as a function of temperature (30–295 K). A lifetime component of 330 ps with no temperature dependence is observed in as-irradiated samples, identified as the positron lifetime in a neutral divacancy and indicating that the divacancy is stable at room temperature (RT). Annealing at 673 K resulted in an increase in the average positron lifetime, and in addition, the annealed samples further showed a larger lifetime component of 430 ps at RT, which is due to larger vacancy clusters. The average positron lifetime in the samples annealed at 473 K has a definite temperature dependence, suggesting that the divacancies become negative as the crystal recovers and the Fermi level moves upwards in the band gap. Annealing at 673 K, reduces the average lifetime and intensity of the defect component τ2 at RT, indicating that the vacancy clusters have started to anneal. Negative divacancies are still present in the samples after this anneal. Annealing at 773 K is enough to remove all observable vacancy defects.Peer reviewe

    Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO

    Get PDF
    We have used positron annihilation spectroscopy to determine the nature and the concentrations of the open volume defects in as-grown and electron irradiated (Eel=2   MeV, fluence 6×10 exp 17   cm exp −2) ZnO samples. The Zn vacancies are identified at concentrations of [VZn]≃2×10 exp 15   cm exp −3 in the as-grown material and [VZn]≃2×10 exp 16   cm exp −3 in the irradiated ZnO. These concentrations are in very good agreement with the total acceptor density determined by temperature dependent Hall experiments. Thus, the Zn vacancies are dominant acceptors in both as-grown and irradiated ZnO.Peer reviewe

    Introduction and recovery of point defects in electron-irradiated ZnO

    Get PDF
    We have used positron annihilation spectroscopy to study the introduction and recovery of point defects in electron-irradiated n-type ZnO. The irradiation (Eel=2MeV, fluence 6×10 exp 17 cm exp −2) was performed at room temperature, and isochronal annealings were performed from 300 to 600 K. In addition, monochromatic illumination of the samples during low-temperature positron measurements was used in identification of the defects. We distinguish two kinds of vacancy defects: the Zn and O vacancies, which are either isolated or belong to defect complexes. In addition, we observe negative-ion-type defects, which are attributed to O interstitials or O antisites. The Zn vacancies and negative ions act as compensating centers and are introduced at a concentration [VZn]≃cion≃2×10 exp 16 cm exp −3. The O vacancies are introduced at a 10-times-larger concentration [VO]≃3×10 exp 17 cm exp −3 and are suggested to be isolated. The O vacancies are observed as neutral at low temperatures, and an ionization energy of 100 meV could be fitted with the help of temperature-dependent Hall data, thus indicating their deep donor character. The irradiation-induced defects fully recover after the annealing at 600 K, in good agreement with electrical measurements. The Zn vacancies recover in two separate stages, indicating that the Zn vacancies are parts of two different defect complexes. The O vacancies anneal simultaneously with the Zn vacancies at the later stage, with an activation energy of EmV,O = 1.8 ± 0.1 eV. The negative ions anneal out between the two annealing stages of the vacancies.Peer reviewe

    Instability of the Sb vacancy in GaSb

    Get PDF
    We demonstrate that the instability of the Sb vacancy in GaSb leads to a further increase in the acceptor-type defect concentration in proton irradiated undoped, p-type GaSb. Using positron annihilation spectroscopy in situ with 10 MeV proton irradiation at 35 K, we find that the irradiation produces both native vacancy defects in GaSb. However, the Sb vacancy is unstable above temperatures of 150 K and undergoes a transition resulting in a Ga vacancy and a Ga antisite. The activation energy of this transition is determined to be 0.6 eV +/- 0.1 eV. Our results are in line with the established amphoteric defect model and prove that the instability of the Sb vacancy in GaSb has a profound role on the native defect concentration in GaSb.Peer reviewe

    Influence of V/III molar ratio on the formation of In vacancies in InN grown by metal-organic vapor-phase epitaxy

    Get PDF
    We have applied a slow positron beam to study InN samples grown by metal-organic vapor-phase epitaxy with different V/III molar ratios (3300–24 000) and at different growth temperatures (550–625°C). Indium vacancies were identified in samples grown at V/III ratios below 4000. Their concentration is in the 10exp17cm−3 range. No strong dependence of vacancy concentration on the molar ratio was observed. At low V/III ratios, however, In droplets and vacancy clusters are formed near the substrate interface. The elevated growth temperature enhances the In vacancy formation, possibly due to limited sticking of In on the growth surface close to the decomposition temperature.Peer reviewe

    Contribution of High Nature Value farming systems to sustainable livestock production : A case from Finland

    Get PDF
    Sustainability of livestock production is a highly contested issue in agricultural sustainability discourse. This study aimed to assess the environmental impact of farms using semi-natural grasslands in Finland, or so-called High Nature Value (HNV) farms. We estimated the environmental impact of 11 such farms, including greenhouse gas emissions (GHG), nitrogen (N) balance, land occupation, and carbon storage. We also accounted for unique biodiversity, defined in this study as communities that are dependent on semi-natural grasslands. We compared these to the alternative states of the farms, specifically a hypothetical farm with the same production output but without access to semi natural grasslands. GHG emissions at the farm level (tCO(2eq)/ha) in HNV farms were 64% lower than on the alternative farms; GHG emissions at the product level (tCO(2eq)/t LW) and N balance (N kg/ha) were 31% and 235% lower, respectively. The carbon stocks were 163% higher at farm level. Biodiversity values, indicated by the share of semi-natural grassland in management, ranged from 23% to 83% on HNV farms. Six out of eleven farms would need to increase their arable land occupation by an average of 39% of arable land to fulfil their needs for animal feed if they did not utilize semi-natural grassland. This study contributes to growing evidence that HNV farming systems can support sustainable production by minimising arable land occupation, reducing nutrient loses, and increasing carbon storage while maintaining unique biodiversity.Peer reviewe
    • …
    corecore