787 research outputs found

    Performance assessment of tariff-based air source heat pump load shifting in a UK detached dwelling featuring phase change-enhanced buffering

    Get PDF
    Using a detailed building simulation model, the amount of thermal buffering, with and without phase change material (PCM), needed to time-shift an air source heat pump's operation to off-peak periods, as defined by the UK 'Economy 10' tariff, was investigated for a typical UK detached dwelling. The performance of the buffered system was compared to the case with no load shifting and with no thermal buffering. Additionally, the load shifting of a population of buffered heat pumps to off-peak periods was simulated and the resulting change in the peak demand on the electricity network was assessed. The results from this study indicate that 1000 L of hot water buffering or 500 L of PCM-enhanced hot water buffering was required to move the operation of the heat pump fully to off-peak periods, without adversely affecting the provision of space heating and hot water for the end user. The work also highlights that buffering and load shifting increased the heat pump's electrical demand by over 60% leading to increased cost to the end user and increased CO2 emissions (depending on the electricity tariff applied and time varying CO2 intensity of the electricity generation mix, respectively). The study also highlights that the load-shifting of populations of buffered heat pumps wholly to off-peak periods using crude instruments such as tariffs increased the peak loading on the electrical network by over 50% rather than reducing it and that careful consideration is needed as to how the load shifting of a group of heat pumps is orchestrated

    The EDEM methodology for housing upgrade analysis, carbon and energy labelling and national policy development

    Get PDF
    The ESRU Domestic Energy Model (EDEM) has been developed in response to demand from policy makers for a tool to assist in analysis of options for improving carbon and energy performance of housing across a range of possible future technologies, behaviours and environmental factors. A major challenge is to comprehend the large variation in fabric, systems (heating, hot water, lighting and appliances) and behaviours across the housing stock as well as uncertainty over future trends. Existing static models have limited ability to represent dynamic behaviour while use of detailed simulation has been based on modelling only a small number of representative designs. To address these challenges, EDEM has been developed as an easy to use, Web based tool, built on detailed simulation models aligned with national house survey data. From pragmatic inputs, EDEM can determine energy use and carbon emissions at any scale, from individual dwelling to national housing stock. EDEM was used at the behest of the Scottish Building Standards Agency and South Ayrshire Council to quantify the impact of upgrades including new and renewable energy systems. EDEM was also used to rate energy/carbon performance of dwellings as required by the EU Directive (EU, 2002). This paper describes the evolving EDEM methodology, its structure and operation then presents findings from applications. While initial EDEM projects have been for the Scottish housing stock the methodology is structured to facilitate project development and application to other countries

    The role of built environment energy efficiency in a sustainable UK energy economy

    Get PDF
    Energy efficiency in the built environment can make significant contributions to a sustainable energy economy. In order to achieve this, greater public awareness of the importance of energy efficiency is required. In the short term, new efficient domestic appliances, building technologies, legislation quantifying building plant performance, and improved building regulations to include installed plant will be required. Continuing these improvements in the longer term is likely to see the adoption of small-scale renewable technologies embedded in the building fabric. Internet-based energy services will see low-cost building energy management and control delivered to the mass market in order that plant can be operated and maintained at optimum performance levels and energy savings quantified. There are many technology options for improved energy performance of the building fabric and energy systems and it's not yet clear which will prove to be the most economic. Therefore, flexibility is needed in legislation and energy-efficiency initiatives

    Comfort driven adaptive window opening behaviour and the influence of building design

    Get PDF
    It is important to understand and model the behaviour of occupants in buildings and how this behaviour impacts energy use and comfort. It is similarly important to understand how a buildings design affects occupant comfort, occupant behaviour and ultimately the energy used in the operation of the building. In this work a behavioural algorithm for window opening developed from field survey data has been implemented in a dynamic simulation tool. The algorithm is in alignment with the proposed CEN standard for adaptive thermal comfort. The algorithm is first compared to the field study data then used to illustrate the impact of adaptive behaviour on summer indoor temperatures and heating energy. The simulation model is also used to illustrate the sensitivity of the occupant adaptive behaviour to building design parameters such as solar shading and thermal mass and the resulting impact on energy use and comfort. The results are compared to those from other approaches to model window opening behaviour. The adaptive algorithm is shown to provide insights not available using non adaptive simulation methods and can assist in achieving more comfortable and lower energy buildings

    Development of an adaptive window-opening algorithm to predict the thermal comfort, energy use and overheating in buildings

    Get PDF
    This investigation of the window opening data from extensive field surveys in UK office buildings demonstrates: 1) how people control the indoor environment by opening windows; 2) the cooling potential of opening windows; and 3) the use of an ‘adaptive algorithm’ for predicting window opening behaviour for thermal simulation in ESP-r. It was found that when the window was open the mean indoor and outdoor temperatures were higher than when closed, but show that nonetheless there was a useful cooling effect from opening a window. The adaptive algorithm for window opening behaviour was then used in thermal simulation studies for some typical office designs. The thermal simulation results were in general agreement with the findings of the field surveys. The adaptive algorithm is shown to provide insights not available using non adaptive simulation methods and can assist in achieving more comfortable, lower energy buildings while avoiding overheating

    Considering the impact of situation-specific motivations and constraints in the design of naturally ventilated and hybrid buildings

    Get PDF
    A simple logical model of the interaction between a building and its occupants is presented based on the principle that if free to do so, people will adjust their posture, clothing or available building controls (windows, blinds, doors, fans, and thermostats) with the aim of achieving or restoring comfort and reducing discomfort. These adjustments are related to building design in two ways: first the freedom to adjust depends on the availability and ease-of-use of control options; second the use of controls affects building comfort and energy performance. Hence it is essential that these interactions are considered in the design process. The model captures occupant use of controls in response to thermal stimuli (too warm, too cold etc.) and non-thermal stimuli (e.g. desire for fresh air). The situation-specific motivations and constraints on control use are represented through trigger temperatures at which control actions occur, motivations are included as negative constraints and incorporated into a single constraint value describing the specifics of each situation. The values of constraints are quantified for a range of existing buildings in Europe and Pakistan. The integration of the model within a design flow is proposed and the impact of different levels of constraints demonstrated. It is proposed that to minimise energy use and maximise comfort in naturally ventilated and hybrid buildings the designer should take the following steps: 1. Provide unconstrained low energy adaptive control options where possible, 2. Avoid problems with indoor air quality which provide motivations for excessive ventilation rates, 3. Incorporate situation-specific adaptive behaviour of occupants in design simulations, 4. Analyse the robustness of designs against variations in patterns of use and climate, and 5. Incorporate appropriate comfort standards into the operational building controls (e.g. BEMS)

    A window opening algorithm and UK office temperature field results and thermal simulation

    Get PDF
    This investigation of the window opening data from extensive field surveys in UK office buildings investigates 1) how people control the indoor environment by opening windows, 2) the cooling potential of opening windows, and 3) the use of an “adaptive algorithm” for predicting window opening behaviour for thermal simulation in ESP-r. We found that the mean indoor and outdoor temperatures when the window was open were higher than when it was closed, but show that nonetheless there was a useful cooling effect from opening a window. The adaptive algorithm for window opening behaviour was then used in thermal simulation studies for some typical office designs. The thermal simulation results were in general agreement with the findings of the field surveys

    The thermal simulation of an office building implementing a new behavioural algorithm for window opening and the use of ceiling fans

    Get PDF
    This investigation of the window opening data from extensive field surveys in UK office buildings investigates 1) how people control the indoor environment by opening windows, 2) the cooling potential of opening windows, and 3) the use of an “adaptive algorithm” for predicting window opening behaviour for thermal simulation in ESP-r. We found that the mean indoor and outdoor temperatures when the window was open were higher than when it was closed, but show that nonetheless there was a useful cooling effect from opening a window. The adaptive algorithm for window opening behaviour was then used in thermal simulation studies for some typical office designs. The thermal simulation results were in general agreement with the findings of the field surveys

    HEAO 1 observations of the X-ray pulsar 4U1626-67

    Get PDF
    Results of an observation of the 7-s pulsar 4U1626-67 with the A2 experiments on HEAO 1 are reported. The phase-averaged X-ray spectra which change radically as a function of pulse phase. Included in this spectral change is the sudden appearance and subsequent decay of a continuum or emission feature with a mean energy of 19 keV which contains about 1/2 the power in this spectral range. Pulse timing results include a new determination of the pulse period and a factor 8 reduction in the upper limit for the light travel time for orbital periods between 1 and 7 hours. The findings for this system are discussed and compared with the general nature of pulsar spectra
    corecore