3,097 research outputs found
Magneto-Infrared Spectroscopic Study of Ultrathin BiTe Single Crystals
Ultrathin BiTe single crystals laid on Scotch tape are
investigated by Fourier transform infrared spectroscopy at K and in a
magnetic field up to T. The magneto-transmittance spectra of the Bi%
Te/tape composite are analyzed as a two-layer system and the optical
conductivity of BiTe at different magnetic fields are extracted. We
find that magnetic field modifies the optical conductivity in the following
ways: (1) Field-induced transfer of the optical weight from the lower frequency
regime (cm) to the higher frequency regime (cm) due
to the redistribution of charge carriers across the Fermi surface. (2) Evolving
of a Fano-resonance-like spectral feature from an anti-resonance to a resonance
with increasing magnetic field. Such behavior can be attributed to the
electron-phonon interactions between the optical phonon mode and
the continuum of electronic transitions. (3) Cyclotron resonance resulting from
the inter-valence band Landau level transitions, which can be described by the
electrodynamics of massive Dirac holes
Dual-species Bose-Einstein condensates of Li and Cs
We report the creation of dual-species Bose-Einstein condensates (BECs) of
Li and Cs. These BECs are formed in a bichromatic optical dipole
trap created with 1550-nm and 780-nm laser beams. During the production
process, an external magnetic field of 886~G is applied to adjust the
scattering lengths to , , and
. These scattering lengths allow for efficient
evaporation and sympathetic cooling. The dual-species BECs are typically
produced with Cs atoms and Li atoms. This
quantum degenerate mixture of Li and Cs provides an ideal platform for
exploring phenomena such as polarons and Efimov trimers, as well as for
creating ground-state LiCs molecules.Comment: 9 pages, 9 figure
Proportional and Preemption-enabled Traffic Offloading for IP Flow Mobility:Algorithms and Performance Evaluation
IP Flow Mobility (IFOM) enables a user equipment to offload data traffic at the IP flow level. Although the procedure of IFOM-based flow offloading has been specified by 3GPP, how many IP flows should be offloaded and when offloading should be performed are not defined. Consequently, IP flows may be routed to a target access network which has a strong signal strength but with backhaul congestion or insufficient access capability. In this paper, we propose two algorithms, referred to as proportional offloading (PO), and proportional and preemption-enabled offloading (PPO), respectively, for IP flow offloading in hybrid cellular and wireless local area networks. The PO algorithm decides an optimal proportion of IP flows which could be offloaded by considering available resources at the target access network. In the PPO algorithm, both service continuity and network utilization are taken into consideration. Furthermore, a detailed analytical model is developed in order to evaluate the behavior of the proposed algorithms. The analytical model is validated through extensive simulations. The results show that by dynamically adjusting the percentage of traffic flows to be offloaded, PO can reduce blocking probability and increase resource utilization. PPO further improves the performance at the cost of slightly higher offloading overhead
Bosonic t-J Model in a stacked triangular lattice and its phase diagram
In this paper, we study phase diagram of a system of two-component hard-core
bosons with nearest-neighbor (NN) pseudo-spin antiferromagnetic (AF)
interactions in a stacked triangular lattice. Hamiltonian of the system
contains three parameters one of which is the hopping amplitude between NN
sites, and the other two are the NN pseudo-spin exchange interaction and
the one that measures anisotropy of pseudo-spin interactions. We investigate
the system by means of the Monte-Carlo simulations and clarify the
low-temperature phase diagram. In particular, we are interested in how the
competing orders, i.e., AF order and superfluidity, are realized, and also
whether supersolid forms as a result of hole doping into the state of the
pseudo-spin pattern with the structure.Comment: 18 pages, 17 figures, Version to appear in J.Phys.Soc.Jp
Distributed Training Large-Scale Deep Architectures
Scale of data and scale of computation infrastructures together enable the
current deep learning renaissance. However, training large-scale deep
architectures demands both algorithmic improvement and careful system
configuration. In this paper, we focus on employing the system approach to
speed up large-scale training. Via lessons learned from our routine
benchmarking effort, we first identify bottlenecks and overheads that hinter
data parallelism. We then devise guidelines that help practitioners to
configure an effective system and fine-tune parameters to achieve desired
speedup. Specifically, we develop a procedure for setting minibatch size and
choosing computation algorithms. We also derive lemmas for determining the
quantity of key components such as the number of GPUs and parameter servers.
Experiments and examples show that these guidelines help effectively speed up
large-scale deep learning training
Assessment of the genetic basis of rosacea by genome-wide association study.
Rosacea is a common, chronic skin disease that is currently incurable. Although environmental factors influence rosacea, the genetic basis of rosacea is not established. In this genome-wide association study, a discovery group of 22,952 individuals (2,618 rosacea cases and 20,334 controls) was analyzed, leading to identification of two significant single-nucleotide polymorphisms (SNPs) associated with rosacea, one of which replicated in a new group of 29,481 individuals (3,205 rosacea cases and 26,262 controls). The confirmed SNP, rs763035 (P=8.0 × 10(-11) discovery group; P=0.00031 replication group), is intergenic between HLA-DRA and BTNL2. Exploratory immunohistochemical analysis of HLA-DRA and BTNL2 expression in papulopustular rosacea lesions from six individuals, including one with the rs763035 variant, revealed staining in the perifollicular inflammatory infiltrate of rosacea for both proteins. In addition, three HLA alleles, all MHC class II proteins, were significantly associated with rosacea in the discovery group and confirmed in the replication group: HLA-DRB1*03:01 (P=1.0 × 10(-8) discovery group; P=4.4 × 10(-6) replication group), HLA-DQB1*02:01 (P=1.3 × 10(-8) discovery group; P=7.2 × 10(-6) replication group), and HLA-DQA1*05:01 (P=1.4 × 10(-8) discovery group; P=7.6 × 10(-6) replication group). Collectively, the gene variants identified in this study support the concept of a genetic component for rosacea, and provide candidate targets for future studies to better understand and treat rosacea
Challenges in biogas production from anaerobic membrane bioreactors
© 2016 Spectacular applications of anaerobic membrane bioreactors (AnMBRs) are emerging due to the membrane enhanced biogas production in the form of renewable bioresources. They produce similar energy derived from the world's depleting natural fossil energy sources while minimizing greenhouse gas (GHG) emissions. During the last decade, many types of AnMBRs have been developed and applied so as to make biogas technology practical and economically viable. Referring to both conventional and advanced configurations, this review presents a comprehensive summary of AnMBRs for biogas production in recent years. The potential of biogas production from AnMBRs cannot be fully exploited, since certain constraints still remain and these cause low methane yield. This paper addresses a detailed assessment on the potential challenges that AnMBRs are encountering, with a major focus on many inhibitory substances and operational dilemmas. The aim is to provide a solid platform for advances in novel AnMBRs applications for optimized biogas production
The Hamiltonian boundary term and quasi-local energy flux
The Hamiltonian for a gravitating region includes a boundary term which
determines not only the quasi-local values but also, via the boundary variation
principle, the boundary conditions. Using our covariant Hamiltonian formalism,
we found four particular quasi-local energy-momentum boundary term expressions;
each corresponds to a physically distinct and geometrically clear boundary
condition. Here, from a consideration of the asymptotics, we show how a
fundamental Hamiltonian identity naturally leads to the associated quasi-local
energy flux expressions. For electromagnetism one of the four is distinguished:
the only one which is gauge invariant; it gives the familiar energy density and
Poynting flux. For Einstein's general relativity two different boundary
condition choices correspond to quasi-local expressions which asymptotically
give the ADM energy, the Trautman-Bondi energy and, moreover, an associated
energy flux (both outgoing and incoming). Again there is a distinguished
expression: the one which is covariant.Comment: 12 pages, no figures, revtex
- …