42 research outputs found

    A structural model of the E. coli PhoB Dimer in the transcription initiation complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes.</p> <p>Results</p> <p>We use a Motif Binding Geometries (MBG) approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA), and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs) to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints.</p> <p>Conclusions</p> <p>Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.</p

    Mismatched dNTP incorporation by DNA polymerase β does not proceed via globally different conformational pathways†

    Get PDF
    Understanding how DNA polymerases control fidelity requires elucidation of the mechanisms of matched and mismatched dNTP incorporations. Little is known about the latter because mismatched complexes do not crystallize readily. In this report, we employed small-angle X-ray scattering (SAXS) and structural modeling to probe the conformations of different intermediate states of mammalian DNA polymerase β (Pol β) in its wild-type and an error-prone variant, I260Q. Our structural results indicate that the mismatched ternary complex lies in-between the open and the closed forms, but more closely resembles the open form for WT and the closed form for I260Q. On the basis of molecular modeling, this over-stabilization of mismatched ternary complex of I260Q is likely caused by formation of a hydrogen bonding network between the side chains of Gln260, Tyr296, Glu295 and Arg258, freeing up Asp192 to coordinate MgdNTP. These results argue against recent reports suggesting that mismatched dNTP incorporations follow a conformational path distinctly different from that of matched dNTP incorporation, or that its conformational closing is a major contributor to fidelity

    Design and synthesis of new 2-arylnaphthyridin-4-ones as potent antitumor agents targeting tumorigenic cell lines

    Get PDF
    To develop new anticancer drug candidates from 2-arylnaphthyridin-4-one (AN), we have designed and synthesized a series of 3′-hydroxy and 6-hydroxy derivatives of AN. The results of cytotoxicity screening indicated that the replacement of the 3′-methoxy moiety on the C-ring phenyl group of AN (6a–e) with 3′-hydroxy (7a–e) made no significant effect on the inhibitory activity against HL-60, Hep3B and NCI-H460 cancer cell lines. On the other hand, replacing the 6-methoxy group on the A-ring of AN (6g–i) with a 6-hydroxy group (7g–i) resulted in reduced inhibitory activity against the above three cancer cell lines. Among the above-mentioned target compounds, 2-(3-hydroxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (7a) demonstrated the greatest potency and the best selectivity toward tumorigenic cancer cell lines. In a 7a preliminary mechanism of action study in Hep3B hepatoma cells, 7a showed the effects on microtubules followed by cell cycle arrest and sequentially led to apoptosis

    A Computational Approach to Modeling Nucleic Acid Hairpin Structures

    Get PDF
    Hairpin is a structural motif frequently observed in both RNA and DNA molecules. This motif is involved specifically in various biological functions (e.g., gene expression and regulation). To understand how these hairpin motifs perform their functions, it is important to study their structures. Compared to protein structural motifs, structures of nucleic acid hairpins are less known. Based on a set of reduced coordinates for describing nucleic acid structures and a sampling algorithm that equilibrates structures using Metropolis Monte Carlo simulation, we developed a method to model nucleic acid hairpin structures. This method was used to predict the structure of a DNA hairpin with a single-guanosine loop. The lowest energy structure from the ensemble of 200 sampled structures has a RMSD of <1.5 Å, from the structure determined using NMR. Additional constraints for the loop bases were introduced for modeling an RNA hairpin with two nucleotides in the loop. The modeled structure of this RNA hairpin has extensive base stacking and an extra hydrogen bond (between the CYT in the loop and a phosphate oxygen), as observed in the NMR structure
    corecore