2 research outputs found

    Engineering design of an integrated sustainable process system for cassava biobased materials

    Get PDF
    Cassava contributes significantly to biobased material development. Conventional approaches for its bio-derivative-production and application cause significant wastes, tailored material development challenges, with negative environmental impact and application limitations. Transforming cassava into sustainable value-added resources requires redesigning new approaches. Harnessing unexplored material source, and downstream process innovations can mitigate challenges. The ultimate goal proposed an integrated sustainable process system for cassava biomaterial development and potential application. An improved simultaneous release recovery cyanogenesis (SRRC) methodology, incorporating intact bitter cassava, was developed and standardized. Films were formulated, characterised, their mass transport behaviour, simulating real-distribution-chain conditions quantified, and optimised for desirable properties. Integrated process design system, for sustainable waste-elimination and biomaterial development, was developed. Films and bioderivatives for desired MAP, fast-delivery nutraceutical excipients and antifungal active coating applications were demonstrated. SRRC-processed intact bitter cassava produced significantly higher yield safe bio-derivatives than peeled, guaranteeing 16% waste-elimination. Process standardization transformed entire root into higher yield and clarified colour bio-derivatives and efficient material balance at optimal global desirability. Solvent mass through temperature-humidity-stressed films induced structural changes, and influenced water vapour and oxygen permeability. Sevenunit integrated-process design led to cost-effectiveness, energy-efficient and green cassava processing and biomaterials with zero-environment footprints. Desirable optimised bio-derivatives and films demonstrated application in desirable in-package O2/CO2, mouldgrowth inhibition, faster tablet excipient nutraceutical dissolutions and releases, and thymolencapsulated smooth antifungal coatings. Novel material resources, non-root peeling, zero-waste-elimination, and desirable standardised methodology present promising process integration tools for sustainable cassava biobased system development. Emerging design outcomes have potential applications to mitigate cyanide challenges and provide bio-derivative development pathways. Process system leads to zero-waste, with potential to reshape current style one-way processes into circular designs modelled on nature's effective approaches. Indigenous cassava components as natural material reinforcements, and SRRC processing approach has initiated a process with potential wider deployment in broad product research development. This research contributes to scientific knowledge in material science and engineering process design

    Quantitative and mechanistic analysis of impact of novel cassava-assisted improved processing on fluid transport phenomenon in humidity-temperature-stressed bio-derived films

    Get PDF
    Bio-derived films’ realistic performance integrity is ascertained by their resilience in highly-stressful storage conditions, a function of its ability to respond timely and manages fluid barrier appropriately. Bio-derived films’ moisture and temperature sensitivity often posed mass transport challenges, thus decreasing their lifespan. Quantifying bio-derived film mass transport behaviour has been limited to mass transfer representations, which can be imperfect to understand fully mass transport phenomenon. This study reported quantitative and mechanistic analysis of fluid-phase mass transport phenomenon in Simultaneous Release Recovery Cyanogenesis-produced intact bitter cassava (IBC) bio-derived films under stressful conditions. Films were tested for solvent solubility, swelling ratio, sorption and permeability to water vapour and oxygen at 10–40 °C and 10–95% RH. Film’s structural alterations were characterised by their thermal and chemical properties. Modified-BET, Peleg, Oswin models best described sorption data. Temperature-dependence of film water vapour permeability was simulated best by Arrhenius model, while oxygen permeability was influenced highly by crystallinity and RH. Non-organic and organic film-solvent diffusion followed case II and Fickian diffusional patterns respectively. Solvents induced structural changes in IBC films with concentration-dependent diffusion. Cassava bio-derived films’ integrity will depend on the host environment, thus maximum care should be ensured to minimise environment impact during applications. Nonetheless, IBC films hold potential as biomaterials for broad range product use
    corecore