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EXECUTIVE SUMMARY 

 

Cassava (Manihot esculenta Crantz) is an important crop for biobased material 

development globally. In the broad area of biobased material development, sweet 

cassava constitutes the biggest portion of the natural biomaterial sources than bitter 

cassava. Bitter Cassava has lagged behind, and employed mainly as an emergency 

famine crop, but can also be used as a value added biomaterial material for broad range 

application. The conventional approach for production of cassava biopolymer 

derivatives (BPD) is accompanied by significant wastes with potential negative 

environmental impact. Among the BPD, starch has been used as lone additive in most 

formulations. However, starch matrices have been the most challenging, causing 

difficulties in the development of uniform tailored materials and limiting industrial 

applications. Attempts have been made to reinforce and modify starch formulations in 

order to improve their functional properties, but also counteract its deficits and improve 

material development and foster applications. However, variability in starch properties 

implied high production costs as well as adding wastes to the environment during its 

processing, limit cassava applications for industrial development of biomaterials. This 

challenge has been compounded by the increasing use of bitter cassava varieties with 

high toxic total cyanogens. Thus, transforming waste cassava into a sustainable resource 

requires a new approach and redesign of the current processing methodologies. 

Exploiting integrated sustainable engineering process design of all BPD, is a novel 

approach in designing efficient system of cassava biobased materials for food and non-

food applications. Exploring possibilities for tapping advantages inherent in cassava 

root should be prioritised in order to address, synergistically, intrinsic cassava issues so 

as to indirectly provide solutions to increasing environment wastes and associated 

management costs. Harnessing innovations in downstream processes and new 

biomaterials which are unexplored, underutilized or region-specific, can facilitate low-

cost and energy-efficient material production, indirect waste management and lead to 

zero environmental footprints. Simultaneous release recovery cyanogenesis (SRRC) is 

hereby proposed as a novel downstream process improvement that can result in 

necessary modifications of cassava processing.  

The ultimate goal of this study was to propose an integrated sustainable process system 

for cassava biobased materials development, and demonstrate its potential broad 

application. Processing of intact bitter cassava can minimise waste, and produce low-
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cost added value biopolymer packaging films for targeted applications. This aim was 

achieved through: (i) development and (ii) standardisation of a methodology for 

elimination of waste and production of widely applicable cassava-rich biopolymer 

derivatives material. This presents a novel downstream processing method for intrinsic 

modification of intact root via simultaneous release recovery cyanogenesis (SRRC); (iii) 

formulation of biopolymeric film prototypes and assessment of their properties for food 

application. Besides, an attempt was made to evaluate them for different applications, 

such as non-food uses; (iv) quantification of film mass transport behaviour simulating 

different relative humidity and temperatures during supply chain. The purpose was to 

gain an understanding of film performance and resilience when they are placed in the 

distribution chain environments; (v) optimisation of film prototypes for desirable 

properties; (vi) development of an integrated process design for effective use of cassava 

wastes, and development of sustainable packaging materials; and (vii) demonstration of 

application of biopolymer flexible films for the development of desired atmosphere 

packaging to extend shelf life of products; (viii) derivatives for the development of 

nutraceutical excipient micronutrient carrier tablet for fast delivery systems; and (ix) 

coatings for antifungal active food packaging.   
 

An extensive critical review was performed on the progress of cassava biobased 

packaging research applications, the current and emerging technologies to solve cassava 

wastes, and cassava biobased packaging research application challenges were 

highlighted, and possible revisions suggested. The potential of integrated sustainable 

engineering process design framework for packaging system was also discussed. 

A novel SRRC downstream processing methodology for sustainable reduction of intact 

bitter cassava waste was developed, along with biopolymer derivatives (BPD) and films 

packaging material. The peeled (BP) and intact (BI) bitter cassava biopolymer 

derivatives were produced and analysed for waste reduction, yield, and total cyanogen 

and amylose contents. The standardisation of the methodology for production of BPD 

was demonstrated by desirability optimisation of the SRRC process. The parameters 

used in the optimisation were buffer, 0, 2, 4 % v/v, cassava waste solids, 15, 23, 30 % 

w/w, and extraction time, 4, 7, 10 minutes, and the responses included yield and colour. 

The global desirability (0 to 1) was used in the prediction of material balances to 

produce the desired yield and colour. The optimal conditions were validated 

experimentally using buffer, 3.3 % w/v, cassava waste solids, 30 % w/w and extraction 
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time, 10 minutes. Validated BPD was characterised using SEM, DSC, TGA, FTIR and 

moisture barrier analyses. The BPD was used in producing films, which were 

characterised in terms of transparency, homogeneity, solubility, permeability to 

moisture, oxygen and carbon-dioxide, less hydrophilicity and sealing ability for food 

application.  

Mechanistically fluid-phase solvent mass transport in IBC packaging films was 

quantified under variable RH and temperature. IBC films were tested for solvent 

solubility, swelling ratio, sorption and permeability to water vapour and oxygen at 10-

40°C, 10-90 % RH (adsorption) and 75, 85, 95% RH (transfer rates). Film’s structural 

alterations were characterised by their thermal and chemical properties. 

The optimal processing conditions, which define the most desirable properties, were 

determined, and films were developed following a Box-Behnken response surface 

design, and optimised using multi-response desirability. The parameters and conditions 

used included cassava (2, 3, 4 % w/v), glycerol (20, 30, 40 % w/w), and drying 

temperature (30, 40, 50°C).  

In order to use cassava wastes effectively, and develop sustainable packaging materials, 

an integrative seven-unit process model flow was considered in the process design. 

Individual processes, within the SRRC, were modelled, optimised and integrated.  

The effect of equilibrium atmosphere packaging (EMAP) design parameters on gas 

composition for cherry tomatoes was assessed and optimised, using an experimental 

design with 4 factors and 2 levels (bio-based, non-bio-based films; 0, 1 perforation; 10, 

20°C; 75, 95 % RH). Package oxygen composition was analysed in duplicate using a 

non-invasive optical oxygen sensor until the equilibrium was reached. The performance 

of bio-based IBC film was compared with non-bio-based oriented polypropylene (OPP) 

film for EMAP. 

The properties of SRRC-processed peeled and intact bitter cassava powders suitable for 

making iron and zinc tablet excipients were determined, as well as disintegration time 

and in-vitro dissolution rate. A preliminary screening, designed to select the powder 

derivative, with best tableting properties for fast Iron (Fe) and zinc (Zn) delivery was 

conducted. Microcrystalline cellulose was used as a reference material with known 

properties for developing drug excipients. Peeled and intact bitter cassava derivatives 

(PD) were characterised for properties suitable for making tablets. Wet granulation of 

PD were used for tablet formulation with Fe and Zn. Disintegration and in-vitro release 
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were performed in deionized water, pH 1.2 and pH 6.8 media, at 37°C. Kinetic models 

were used for describing matrix dissolution and Fe/Zn release mechanisms. 

Application of biopolymer coatings for antifungal active food packaging was 

demonstrated, by evaluating the capacity of intact bitter cassava polysaccharide-rich 

derivatives (PD) to encapsulate thymol, and their antifungal effect and strength on 

stored strawberries using qualitative methods. Four coatings were formulated with intact 

bitter cassava polysaccharide-rich derivative (2 % w/v), glycerol (40 % w/w) and 

thymol (0.25, 0.5, 0.75 and 1.0 % w/v), and analysed by their encapsulation efficiency, 

permeability to water vapour, surface energy and wetting, and antifungal activity.  
 

Previous work showed that sweet cassava starch is extensively used in biobased 

materials, and its production using conventional methods (at all processing levels) 

generated significant wastes (20-30% w/w). In addition, the shortfalls in starch resulted 

in their matrix physical & chemical modifications. Together, with multiple processes 

applied to add value to wastes caused high cost & high energy of material production, 

and limited their commercial use. Furthermore, the review revealed that there is scanty 

information on research that attempted to validate starch based packaging materials in 

real conditions of the supply chain. There is potential of using holistic approaches to 

cassava biobased material development. 

This study showed that using this novel SRRC process, intact bitter cassava (BI) 

produced significantly higher biopolymer derivative yields than peeled (BP), 

guaranteeing 16 % waste decrease with no environmental impact caused by discard 

residues. SRRC reduced effectively the total cyanogen content to within Codex 

minimum safety limits, demonstrating that the peeling of bitter Cassava process can be 

avoided. An integrated process methodology transformed nearly all the intact root into 

BPD with higher yield, 41 % w.b. and colour difference, 1.3 in contrast to 26 % w.b. 

yield and 28 colour difference when cassava starch was extrinsically processed.  

Efficient material balance was predicted at optimal global desirability, 1.0 in order to 

produce BPD with yield, 38.8 % w.b. when using buffer, 4.0 % w/v, cassava waste 

solids, 23 % w/w and extraction time, 10 minutes, for producing BPD with yield, 38.8 

% w.b. Experimental validation, with buffer, 3.3 % w/v, cassava waste solids, 30 % 

w/w and extraction time, 10 minutes, produced BPD with 40.7 % w.b. yield. The BPD 

produced films which were more transparent and homogeneous, less soluble, less 

permeable to moisture, less hydrophilic, more permeable to oxygen and carbon-dioxide, 
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sealable, lower cost, than the BP. The uniform microstructure and high thermal stability 

of BPD and film demonstrated efficient performance of the standardised integrated 

methodology.  

Processing intact bitter cassava root using a standardised integrated SRRC can be used 

to produce sustainable low cost BPD and films for a broad range of applications. 

Methodologies designed around standard integrated procedures, matching zero-based 

approach to contamination elimination, are novel strategies, and if they are used 

effectively and widely can provide better avenues to eliminate cassava wastes and 

recover BPD resources as sustainable biomaterials. 

Modified-BET (R2, 1.0; deviation, 3-4%) and Peleg (R2, 1.0; deviation, 3-5%) models 

best described the sorption data. The temperature dependence of permeability for water 

vapour through films is best simulated by Arrhenius and WLF models (R2, 0.999), 

while that of oxygen was influenced by crystalline and high RH.  The diffusion of non-

organic and organic solvents through films followed case II non-diffusional and Fickian 

patterns, respectively. Solvents through films induce structural changes in IBC films 

with concentration-dependent diffusion. 

Developed models predicted impact of processing conditions on film properties.  

Desirable film properties for food packaging were produced using the optimised 

processing conditions, 2 % w/v cassava, 40.0 % w/w glycerol, and 50°C drying 

temperature. These processing conditions produced films with 0.3 %; transparency, 3.4 

%; solubility, 21.8 %; water-vapour-permeability, 4.2 gmm.M-2.day-1kPa-1; glass 

transition, 56°C; melting temperature, 212.6°C; tensile strength, 16.3 MPa; elongation, 

133.3%; elastic modulus, 5.1 MPa; puncture resistance, 57.9 J, which are adequate for 

packaging applications. 

The release process models, predicted the maximum yield (45.8 %) and the maximum 

total cyanogens (0.6 ppm) and colour difference (4.0) needed to avoid wastes and 

unsafe biopolymer derivatives.  The process design allowed saving on the energy and 

water due to its ability to reuse wastewaters in the reactions and release processes. 

Drying rates, Scanning Electron Micrograph, Differential Scanning Calorimetry, Water 

vapour transmission rate and Fourier transmission infrared spectroscopy analyses have 

demonstrated the practical advantage of laminar flow hood air systems over oven-

drying heat for an integrated design process. Thus, integrated design process could be 

used as a green tool in production of cassava products with near zero environmental 

waste disposal.   
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Intact bitter cassava film (IBCF) in-package O2 composition reached equilibrium at 2 % 

and 3 %, after 180 h (over 7 days) at 10°C, with 0 or 1 perforation, for 75% and 95% 

RH respectively. This ensured that the mould growth on cherry tomato surface was 

inhibited until 15-19 days of storage at 10⁰C. The similarities in the equilibrium O2 

composition of 2 % between perforated and non-perforated suggest that there would not 

be need to perforate IBCF. Besides, there is need to establish the possible structural 

changes likely to occur in IBCF at high RH. Factorial analysis on package performance 

showed that film type, perforations, temperature, relative humidity, and their interaction 

had varying significant (p≤0.05) effects on O2 composition. Temperature and RH 

influenced IBCF significantly, whereas perforations, temperature and their interaction 

impacted on OPP significantly. Desirable O2 and CO2 composition of 3.11 and 4.73 % 

for IBCF EMAP of cherry tomatoes was achieved with optimised design parameters, 

10°C, 75 %RH, 0 mm, while one of OPP (7.65 % and 11.39%) did not fall within the 

recommended 3-5 % O2 composition; hence, IBCF can be an alternative film for 

EMAP. Demonstration of the potential application of IBC film for EMAP was shown.   

Application of biopolymer derivatives for the development of nutraceutical excipient 

micronutrient carrier tablet for fast delivery systems was demonstrated. Intact bitter 

cassava PD allowed formulation of tablets, showing better properties than peeled 

cassava PD, to which the tablets were selected for in vitro dissolution studies. Tablet 

excipient matrices demonstrated faster dissolution and Fe/Zn release within 30 to 45 

min, across all tablet weights, with dissolution rates of about 90%. All the kinetic 

models described the release mechanism, with best fits (R² > 0.85). The study highlights 

potential of intact bitter cassava polysaccharide-rich derivatives as an excipient that can 

enhance fast releases of Iron and zinc. The recovered biomaterial from waste cassava 

may provide broader applications as potential alternative nutraceutical excipients. 

All the four coatings developed had higher encapsulation efficiency (> 95%), which was 

concentration-dependent. Coating permeability to water vapour was in the range of 

4.89-0.02 g mm / (m² day kPa), and was inversely proportional to coating concentration. 

Coating wettability occurred at medium to high contact angles (88.71-111.26⁰) and 

decreased as thymol concentration increased, and this facilitated better and smooth 

coating of the strawberries. Coatings demonstrated efficient antifungal activity in 

strawberries, with mould-growth inhibition reaching beyond 14 days of storage. These 

results have significant implications for the design of antifungal systems based on intact 

bitter cassava/natural bioactive-coating dispersions. 
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Cassava biobased materials should be improved using a holistic approach reflecting the 

target products, variable environment, minimising production costs and energy. Use of 

novel material resources, eliminating waste, and employing a standardised methodology 

via desirability optimisation, present a promising process integration tool for 

development of sustainable cassava biobased systems. The outcomes of this research 

through an integrated process design have potential applications:  

1. Mitigating the challenging issue of cyanogens in bitter cassava provides a path for 

use in bioderivatives development and other applications, but also a	paradigm	of 

economic and well-being of communities which use bitter cassava. 

2. Intact bitter cassava use leads to zero waste, and will help to reshape the current 

style one-way processing designs into circular designs modelled on nature's 

effective approaches. This will also benefit SME processing units achieve a local 

system that functions efficiently, sustains the environment, and delivers self-

sufficiency. Moreover, this will lead to indirect waste elimination instead of waste 

management. 

3. Inclusion of indigenous cassava components as natural material reinforcements for 

bioderivatives 

4. The SRRC is a novel improvement approach to downstream processing of novel 

bio-derived products  

5. Other potential applications:   

a. By-product’s regulation for waste elimination, reduction in costs of waste 

management and recycling, 

b. Generally, in processes which require efficient use of energy resources, 

reduction in cost of production, and other integration of product process designs; 

c. Development of tailored materials for both food and non-food uses: i) packaging 

films and edible coatings; ii) biobased bags for plastics replacement; 

d. As ingredients in food industry and excipients in drug delivery; 

6. Ultimately, this has initiated a process which may lead to a wider utilisation in 

broad product research development. 	

7. Finally, this research contributes to scientific knowledge in material science and 

engineering process design. 

 

Keywords: Bitter cassava; Green processing; Waste-reduction; Biopolymer derivative; 
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Packaging film; Mass transfer; Quantitative; Mechanistic; Relative humidity; 

Temperature-dependence; Desirability optimization; Standardization; Optimal design; 

Process integration; Sustainable system; Modified-atmosphere packaging; Cherry 

tomato; Nutraceutical; Tablet excipient; Delivery system; Iron; Zinc; Coating; Thymol-

encapsulation; Antifungal; Strawberries. 
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GENERAL INTRODUCTION 

 

Background  

 

Global environmental impact challenges such as supply chain by-product waste streams, 

high waste management costs, finite natural material sources and competition for food 

supply, have drawn much interest to invest in sustainable systems. Previously, 

environmental waste disposal, accruing from linear and irreversible behavioural patterns 

defined by produce–consume and dispose models, have resulted in significant negative 

environmental impacts. Up until recently, the concept of integrated sustainable process 

system has not been conceived and comprehended in various process designs and 

developments. Holistic approaches to process design, which reflect interactions and 

associated synergisms, could form an essential component of sustainability. Evaluation 

of novel options, using efficient, inexpensive and green processes/techniques including 

waste utilisation through addition of value to by-products (recovery and modification 

into reusable materials and energy), may provide solutions to sustainable systems. 

 

Cassava (Manihot esculenta Crantz) positions itself among crops with the most desired 

biomaterials for broad range of applications. It is inexpensive with high polysaccharide 

proportions of starch, holocellulose, hemicellulose, cellulose, lignin, monosaccharides 

and other secondary metabolites. Additionally, cassava is fully degradable, renewable 

resource and versatile. The conventional process of sweet cassava polysaccharide starch 

involves many stages of refinements that produce a number of by-products such as solid 

waste, wastewater and their metabolic derivatives. However, the impact of these wastes 

discharged from this process contributes significantly to hazardous wastes, industrial 

disasters and environmental and human risks globally. In addition to sweet cassava-

based high waste volumes, the high total cyanogen bitter variety, and its associated 

conventional poor and unilateral processing methodologies, has often compromised 

product and human safety thereby indirectly contributing to more wastes.  Throughout 

the past two decades, sweet cassava has been an integral component of biobased 

packaging material, notably its derivatives have contributed significantly to edible films 

and coatings. However, starch matrices have been the most challenging, causing 

difficulties in the development of uniform tailored materials and limiting industrial 

applications. Recently, much attention has been dedicated on external reinforcements 
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and modifications as solutions for counteracting starch deficits in order to improve 

material development and foster applications. In spite of copious scientific successes 

regarding package material improvements, their variability in properties and high 

production costs, limit cassava applications for industrial development of biomaterials.  

 

Exploring possibilities for tapping advantages inherent in cassava root should be 

prioritised in order to address, synergistically, issues intrinsic to cassava, as well as 

environment-borne concerns. This may offset cassava drawbacks and contribute to 

sustainable approaches. Harnessing innovations in downstream processes and new 

biomaterials which are unexplored, underutilized or region-specific, can facilitate low-

cost and energy-efficient material production, indirect waste management and lead to 

zero environmental footprints. Simultaneous release recovery cyanogenesis (SRRC) is 

hereby proposed as a novel downstream process improvement that can result in 

necessary modifications of cassava processing.  SRRC is a highly efficient and low-cost 

modification process in terms of its provision of derivative-rich polysaccharides, 

delignification ability, detoxification capacity, and easy to handle in a single process. 

Unlike in the conventional process whereby polysaccharides are obtained individually 

in different process, SRRC makes it easy to isolate them in a single process using 

intrinsic processes in the intact root. This contributes to the utilisation of what would be 

wasted thereby making the whole process cost-effective, energy-efficient and time 

saving.  Delignification aids in release of cellulose and holocellulose, and clarifies 

material colour. Detoxification is achieved by intrinsically hydrolysing linamarin with 

enzyme linamarase leading to release of highly toxic hydrogen cyanide in the process of 

cyanogenesis. Reduction in lignin and total cyanogens is crucial before the pulp is 

subjected to the reactions process. Conventionally, all the above was achieved in 

different processes, and in this study it is achieved by the application of SRRC process.  

 

Together, integrating downstream market product development processes into the 

design of upstream processes, could eliminate barriers, and improve adoption and 

application of cassava biobased materials in industry. Engineering design of an 

integrated sustainable process system for cassava biobased materials requires thorough 

consideration of holistic approaches. These should incorporate inexpensive cassava 

biomaterials, improvement in the downstream processing, green and synergistic 

processes and adding value to wastes. Finally, with an understanding of the impact of 
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supply chain conditions on material development and performance can maximise 

cassava biobased materials.  

 

Thesis statement, objectives and rationale   

 

Sweet cassava has been extensively studied for packaging, mainly in edible and 

antimicrobial films for food and non-food applications. In spite of these stimulating 

studies, further consideration is needed to improve cassava biobased materials for 

diverse applications. An alternative approach is to consider a holistic development 

system. A holistic approach to the development of cassava biobased materials with 

suitability and broad-based application is a function of a whole process design and 

development, as an integrated, complementary, and synergistic system. Thus, 

consideration of cassava biopolymer derivatives, the process development 

methodology, optimisation of the process conditions and parameters, environment, and 

associated interactions, is vital to add value to materials. The whole system must take 

into account green, low-cost and energy-efficient engineering processes in order for it to 

be sustainable.  

 

The fundamental work is premised on, and anchored by, the thesis statement that 

provided the basis for all studies in the thesis: “A Holistic approach to processing, 

incorporating standardisation and integration, result in development of sustainable 

cassava biobased systems” 

  

The ultimate aim of this study was to propose an integrated sustainable process system 

for cassava biobased materials development, and demonstrate its potential broad 

application. Bitter cassava was used as a natural biomaterial model; nonetheless the 

process can be used with other natural biomaterials. This aim was achieved through:  

 

1. Development and standardisation of a methodology for elimination of waste and 

production of widely applicable cassava-rich biopolymer derivatives material. 

This presents a novel downstream processing method for intrinsic modification 

of intact root via simultaneous release recovery cyanogenesis (SRRC); 
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2.  Formulation of biopolymeric film prototypes and assessment of their properties 

for food application. Besides, an attempt was made to evaluate them for different 

applications, such as non-food uses; 

3. Quantification of film mass transport behaviour simulating different relative 

humidity and temperatures during supply chain. The purpose was to gain an 

understanding of film performance and resilience when they are placed in the 

distribution chain environments; 

4. Optimisation of film prototypes for desirable properties; 

5. Development of an integrated process design for effective use of cassava wastes, 

and development of sustainable packaging materials; and 

6. Demonstration of application of biopolymer:  

6.1 Flexible films for the development of desired atmosphere packaging to 

extend shelf life of products; 

6.2 Derivatives for the development of nutraceutical excipient micronutrient 

carrier tablet for fast delivery systems; and  

6.3 Coatings for antifungal active food packaging.  

 

Contribution to scientific knowledge  

 

The ongoing research on cassava biobased material focuses on reinforcing starch 

matrices with externally-sourced polysaccharides like cellulose in order to improve 

physical, chemical and functional properties. However, within the root a reasonable 

proportion of these polysaccharides are present, apparently wasted as by-products 

during starch production. These conventional processes lead to significant disposal of 

wastes in form of by-products, and the reinforcements require additional processes with 

cost implications.  In this work, the focus is uniquely on the reinforcements within the 

root, with the objective of optimising the process, utilising the byproducts and reducing 

the waste at low-cost. This is achieved by use of SRRC processing of intact root, 

purposely to increase value and reduce or eliminate waste through research. 

 

Biobased materials centred on sweet cassava have been used extensively in research and 

application. Sweet cassava seems to have rivalled demand both in food supply and as an 

industrial raw material. In a situation of global population explosion, sources of biomass 
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should not compete with the crops necessary to provide food. Exploring novel 

alternative sources of bitter cassava is not only an improvement on easing the current 

cost and competition of biomaterials but ensuring the safety of bitter cassava and 

producing unrivalled biomaterial. Utilisation of bitter cassava is an additional strategy 

of indirectly adding to reduction of by-product wastes.  

 

Modelling of processes has been used extensively in the optimisation of many different 

types of systems and materials, including cassava biobased materials. However, in the 

conventional approaches, these processes have been optimised separately. Using a 

holistic approach to process design, which emphasises unified processes and considers 

interactions and synergisms between different processes is a novelty on conventional 

modelling and optimisation methodologies and processes for cassava biobased 

materials. By using SRRC that entails intrinsic modification, optimisations in release 

and recovery, and exploiting synergisms in reuse in reaction material, and integration of 

novel materials on different applications is innovative. This has not been performed in 

the development of sweet cassava biomaterials. 

 

The outcomes of integrated process design have potential applications:  

1. In proper by-product’s regulation for waste elimination, reduction in costs of waste 

manage and recycling, 

2. Generally, in processes which require efficient use of energy resources, reduction in 

cost of production, and other product integration process designs; 

3. Development of tailored materials for both food and non-food uses such as:  

3.1 Edible and non-edible food packaging films and coatings; 

3.2 Biobased bags for waste management and replacement of food 

plastics in the market; 

4. As ingredients in food industry and excipients in drug delivery, and  

5. Ultimately, this has initiated a process which may lead to a wider utilisation in broad 

product research development.  

 

Finally, the research contributes to scientific knowledge in material science and 

engineering process design. 
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Thesis structure 

 

This thesis is structured in three different sections, comprising a total of 9 chapters. The 

first section consists of Chapter 1 and presents the literature review. The second section 

is broken down into 5 chapters, which describe the experimental fundamentals of the 

study (Chapter 2 to 6). The third section of this study is composed of three chapters 

(Chapter 7 to 9), highlighting the potential application of the materials obtained from 

intact bitter cassava. 

 

Chapter 1 presents a critical review on the progress of cassava biobased material 

research applications in the last decade, current and emerging techniques and 

methodologies to address cassava wastes. Furthermore, cassava research challenges 

encountered in biobased material application as well as the potential of integrated 

sustainable engineering process design framework for material development system are 

described. 

 

Chapter 2 describes the development of an improved SRRC downstream processing 

methodology with intact bitter cassava. Waste reduction and biopolymer derivatives 

production are also investigated. 

 

Chapter 3 reports the results of the standardisation of the methodology to produce 

biopolymer derivatives. An attempt was made to produce films to support the validity of 

the standardised methodology. 

 

Chapter 4 gives an account of the mass transport system of intact bitter cassava films 

under different storage conditions of temperature and relative humidity. 

 

Chapter 5 reports the results of desirability optimisation of cassava packaging 

development. 

 

Chapter 6 presents an integrated process design system for cassava as a tool to use 

cassava waste in a cost-effective and energy-efficient manner. It presents a holistic 

approach to develop cassava biobased systems. 
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Chapter 7 provides an insight into application of cassava biobased films in modified 

atmosphere packaging of tomatoes.  

 

Chapter 8 provides an insight into application of cassava biobased derivatives as an 

excipient tablet carrier of micronutrient Iron and zinc. 

 

Chapter 9 provides an insight into application of cassava biobased derivatives as 

coatings in antifungal active packaging of strawberries,  

 

Lastly, a general conclusion and future perspectives are presented. 

 

The structural summary of this thesis, illustrating the linkage and interaction of different 

chapters is schematically presented hereunder. 
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Chapter 1. Towards integrated sustainable process design framework for 

cassava biobased materials: critical review on the progress of 

biobased packaging research and emerging trends  

 

Abstract 

 

Cassava represents a reasonable share in biobased material development globally. The 

production of its biopolymer derivatives (BPD) using conventional techniques/methods 

is accompanied by huge wastes with potential negative environmental impact. Among 

the BPD, starch dominates as lone additive in cast matrices with packaging limitations, 

requiring other BPD, and/or external-source modifiers for matrix improvement. 

Exploiting integrated sustainable engineering process design of all BPD, is a novel 

approach in designing efficient system of cassava biobased materials for food and non-

food applications. 

A critical review on the progress of cassava biobased packaging research applications in 

the last decade is provided. The current and emerging techniques and methodologies to 

address cassava wastes and challenges of cassava research for application on biobased 

packaging are highlighted, and possible revisions suggested. The potential of integrated 

sustainable engineering process design framework for packaging system is discussed 

and emphasized together with the exploitation of novel cassava biomaterials and 

biowastes. 

Research progress has been made in developing cassava biobased materials, mainly 

with improvements on structural and functional properties. Challenges were identified 

from the amount of waste generated during conventional processing and on the 

application process aiming at tailoring materials to industrial needs. These materials 

should be improved using a holistic approach reflecting the target products, variable 

environment, minimising production costs and energy. Use of novel material resources, 

eliminating waste, and employing a standardised methodology via desirability 

optimisation, present a promising process integration tool for development of 

sustainable cassava biobased systems.  

 

Keywords: Cassava, wastes, green processing, packaging material, sustainable system  
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1. Introduction 

 

The substantial global dependence on petrochemical based materials (BM) has given 

rise to packaging security concerns. These concerns, together with negative 

environmental impacts (Emmambux, Stading, & Taylor, 2004; Tokiwa, Calabia, Ugwu, 

& Aiba, 2009), increased population pressure on finite and dwindling natural resources 

and competition for food supply, have drawn the extensive research and development of 

sustainable alternatives (SA). The SA that are green, clean, post-use biodegradable, 

compostable, efficient and sustainable are desired (Coombs & Hall, 2000). The BMs, 

which have emerged as main alternatives to address the concerns, are obtained from 

renewable resources which is a component of a sustainable biobased industry. Cassava 

(Manihot esculenta Crantz) represents a sustainable resource of biobased products 

(Hood, Teoh, Devaiah, & Requesens, 2013). 

 

Cassava: A versatile crop resource of biomaterials 

 

Cassava is categorised into sweet or bitter, with sweet cassava (SC) being edible and 

safe for immediate use in fresh and processed forms, while the bitter ones are unsafe for 

immediate consumption. Cassava is consumed widely and highly valued as food 

security anchorage for tropical and sub-tropical countries. Mainly in Africa whereby 

more than half of the world’s cassava or about 162.5 million t from over 15 million 

hectares, compared to more than 33 t (3.0 ha) and 92 t (5.0 ha) millions in Latin 

America and Asia, are cultivated (FAOSTAT, 2015).  

 

Advancements in the biopolymer research triggered, in the last decade, the paradigm 

shift towards a fully industrial-applied SC (Adetunji, Isadare, Akinluwade, & Adewoye, 

2015). Increasing awareness of the association between cassava biopolymer derivatives 

(BD) and cheap industrial biobased products might account for this trend. This 

popularity is due to its easily processed low cost biopolymer derivatives (Starch, 

cellulosic fibres, lignin, and hemicellulose) (Table 1.1). Of the BD, starch has been 

extensively studied, perhaps due to its high root proportionality, chemical and 

functionality (Blazek & Copeland, 2009) , and received a higher attention for biobased 

materials production (Paunonen, 2013). Starch molecular structures, with differentiated 
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amylose (20-30%) and amylopectin (70-80%) contents (Mufumbo et al., 2011), presents 

unique polymer functionality in wide range applications. The proportionality of amylose 

and amylopectin in extracted and applied starch can differ significantly depending on 

production methodology and amounts used to prepare products. Amylose is a nearly 

linear polymer of α-1, 4 anhydroglucose units that has excellent film-forming ability, 

rendering strong, isotropic, odourless, tasteless, and colourless film (Campos, 

Gerschenson, & Flores, 2011).   Amylopectin is a highly branched polymer of short α-1, 

4 chains linked by α-1, 6 glucosidic branching points occurring every 25–30 glucose 

units (Liu, 2005). Consequently, amylose and amylopectin provide materials of varying 

viscosities, crystalline quality and the energy required to melt the material (Mufumbo et 

al., 2011).  

 
Table 1.1 Composition of sweet cassava root and different components  
 
Component  per 100 g (On a fresh weight (dry matter) basis) 

 
Cassava root (Uchechukwu-Agua, Caleb, & Opara, 2015) 

Water, g 60 
1.4 
0.28 
38 
1.8 
1.7 
0.46 
0.07 

Protein, g 
Fat, g  
Carbohydrate, g  
Fibre, g 
Sugar, g  
Minerals, g  
Vitamins, g  
 
   

Cassava peeled & unpeeled root  (Ospina & Ceballos, 2002) 
 Peeled unpeeled 
Water, g 71.50 68.06 
Carbohydrate, g 26.82 29.06 
Crude fibre, g 0.12 0.99 
Crude protein, g 0.74 0.87 
Ash, g 0.13 0.17 
Vitamins 0.69 0.85 
   

Cassava waste solids (peel and edible fibre) polysaccharides 
(Salvador, Suganuma, Kitahara, Tanoue, & Ichiki, 2000) 

Others 1.8 
17.8 
22.8 
48.2 

Pectin 
Hemicellulose 
Cellulose 
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1.1 Cassava starch production and environmental impact 

 

Due to SC starch ease of processing, low cost and potential high yields, conventional 

methods have been used for its extraction, purification and drying. Wet milling (WM) is 

the most common and simple conventional method, using at industrial level, simple 

equipment and heavy investment, depending on the desired final product (Lundy, 

Ostertag, & Best, 2002). Cassava starch can be obtained from fresh roots or its non-

edible parts, stems, peels and leaves, primarily by WM and starch has also been 

produced from dry cassava chips. The complete step-wise process (using simple or large 

scale extraction) can be divided into four main stages: (i) preparation (peeling and 

washing); (ii) rasping/pulping/grating; (iii) recovery (starch sedimentation, washing, 

dewatering, drying); and (iv) finishing (milling and packaging).  

 

Beyond starch extraction, cassava processing also generates large amounts of wastes as 

waste solids (WS) and wastewaters (WW) (Adeola, 2011). The United Nations 

Statistics Division, Glossary of Environment Statistics defines wastes as materials that 

are not prime products for which the initial user has no further use in terms of his/her 

own purposes of production, transformation or consumption, and of which he/she wants 

to dispose. Wastes can be generated during the extraction of raw materials, the 

processing of raw materials into intermediate and final products, the consumption of 

final products, and other human activities (UNSD, 1997). According to FAO (FAO, 

2013), starch roots, mainly cassava contributes over 700 MT wastes in the global 

upstream food wastes, requiring conversion into valuable products and energy in an 

environmentally friendly manner. Besides, an active starch plant can generate up to 47% 

total fresh disposable cassava by-products (Heuzé, Tran, D Archimède, Lebas, & 

Regnier, 2013). When disposed for a given period in the environment, these could be 

typically associated with emission of strong unpleasant smells, carbon-dioxide and total 

cyanogens (TC). Cassava wastes (CW)-rich TC can contaminate surface water, 

groundwater, soil, and air which causes more problems for humans, other species, and 

ecosystems (Simonetto & Borenstein, 2007). In addition, CW can also be a source for 

rodents and insects, which can harbour gastrointestinal parasites, yellow fever, worms, 

the plague and other conditions for humans. Moreover, the increasing nature of non-

beneficial sweet cassava competition might exacerbate waste disposal problems arising 

from more use of bitter cassava. During the traditional processing, huge WS and WW 
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are generated from bitter varieties in order to avoid total cyanogens contained in the 

peels (Cardoso et al., 2005; Tumwesigye, Oliveira, & Sousa-Gallagher, 2016a). With 

insufficient prioritization of packaging source reduction, recyclability, compostability, 

recycled content and recycling policies (MacKerron & Hoover, 2015), wastes are likely 

to increase in the years ahead. 

 

Thus, this review provides a brief progress in cassava research application in bio-based 

materials in the last decade. The current technologies and methodologies used to 

address cassava wastes, and challenges of research to apply cassava biobased materials 

in food industry are highlighted. The potential of integrated green engineering process 

design framework for sustainable packaging system development is discussed and 

emphasized together with the exploitation of novel cassava biomaterials and biowastes. 

 

1.3 Overview of a decade of cassava bio-based packaging materials research 

application 

 

A decade of global utilisation of SC in the development of biobased packaging 

materials (BPM) is summarised in Figure 1.1. Among the SC biopolymer derivatives, 

the most versatile and valuable for BPM has been starch, while cellulose had the 

smallest use. Edible films dominated cassava research, with the remainder going to 

other products. Research developments in active packaging films showed continuous 

but unsteady increases up to the past 3 years, while film development targeting food 

packaging was minimal and currently show unstable decrease. Overall, the film 

development trend seems to continuously decrease in the past three years, and this is 

consistent with decreases in starch use and edible, active packaging and tailored food 

film development. Conversely, cellulosic fibre application seems to continuously 

increase in the past two years. The observed decrease trends might be due to limited and 

declining SC sources and competition for food supply (Tumwesigye, Montañez, 

Oliveira, & Sousa-Gallagher, 2016b). The increasing use of cellulosic fibres could be 

due to increase in awareness on alternative benefits of non-food plant derivatives.  
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Fig. 1.1  Summary of a ten-year research application of sweet cassava in the development of 

biobased packaging materials: overall trend (A); edible films (B); starch use (C); active 

packaging (D); cellulose use (E); recommended for use in food packaging (F); physical 

modification (G); chemical modification (H); and non-modification (J). 

 

A number of conventional methods/techniques for the development of BPM have been 

reported in literature, and they include: extrusion (sheet/film, reactive), baking, injection 

moulding, blow moulding, compression moulding, vacuum foaming, casting, spraying, 

lamination, calendaring and thermoforming (Imam, Glenn, Chiou, Shey, Narayan, & 

Orts, 2008). Casting has been the commonest technique used for producing edible and 

biodegradable starch films (Table 1.2), and was adequately described by Jiménez, 

Fabra, Talens, & Chiralt, (2012). Regardless of the technique used, the production and 

characterisation of BPM is a four-stage process: (i) pre-heating homogenisation of 

additives; (ii) heating of polymeric solution; (ii) drying; and structural and functional 

characterisation. Heating and drying are vital steps in the production of desired BPM 

because they can alter the structure and affect the functional application (Tumwesigye et 

al., 2016b). The most common convention characterisation techniques for cassava 

reported are: (i) thickness measurements (Micrometer); (ii) optical (colour-chroma; 

transmission-spectrophotometry); (iii) structure and morphology (scanning electron 
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microscopy); (iv) surface energy-sessile drop technique (optical tensiometer); (v) 

chemical and functional-flourier transform infrared (UV/Vis spectrophotometer); (vi) 

barrier- gravimetric measurement for water vapour permeability (with acrylic 

permeation cell), oxygen and carbon-dioxide transmission rate (Presens/Dansensor); 

(vii) mechanical-Texture analyser; (viii) thermal techniques (differential scanning 

calorimetry, thermogravimetric analysis, x-ray diffraction, Crystallinity). 
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Table 1.2 Summary of cassava biobased material mechanical and barrier properties  

 

Materials Method Thickness, mm Property Reference 

Tensile 

strength, 

MPa 

Elongation, 

% 

Water vapour 

permeability 

Oxygen 

permeability 

Starch*, glycerol  casting 0.08 4.0–49.0 3.0–46.0 4.02-8.33u 33 Mali et al. 2006 

Starch*, Chitosan flake, 

Acetic acid (glacial) 

casting 0.10-0.12 0.38-21.02 3.16–39.86 2.30–3.15** - Bangyekan et al. 2006 

Starch*, amylose, glycerol casting 0.10 2.2–52.8 4.5–263.1 0.24–0.49u - Alves et al. 2007 

Starch*, glycerol, potassium 

sorbate 

casting - 0.16–2.35 1.30–29.0 6.10–16.1u - Flores et al. 2007 

Modified starch  0.06–0.12 - - 0.12–0.21n - Henrique et al. 2007 

Starch*, montmorillonite, 

chitosan, glycerol, acetic acid 

casting 0.071 21.2–24.64 1.1–4.5 1,082–2,000** - Kampeerapappun et al. 

2007 

Starch*, agar, glycerol, 

Polyethylene glycol200 

casting 0.014–0.048 1.39–42.11 - 10.3–137.0u - The et al. 2008 

Starch*, chitosan, gelatin, 

glycerol 

casting 0.083–0.117 13.63–49.40 4.51–110.7 5.78–10.17u 0.64–2.58 p Zhong&Xia, 2008 

Starch*, chitosan, glycerol,  

oregano oil 

Extruder - 1.43–2.54 21.95–48.40 0.62–1.39u - Pelissari et al. 2009 

Starch*, PBAT, tween80, 

polyoxyethylene sorbitan 

casting 0.15–1.21 0.5–14.5 12.5–32.5 0.0009–0.0115 u - Brandelero et al. 2010 
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monooleate 

Starch*, xanthan gum, 

potassium 

sorbate 

Extruder - Negligible 19.0–85.0 3.70–6.70u - Flores et al. 2010 

Starch*, sucrose, inverted sugar, 

spinach 

casting 0.084–0.116 1.81–7.75 65.0–217.0 12.3–99.9u - Veiga-Santos et al. 2010 

 

* Commercial, native; ** Water vapour transmission rate, g / (m2.day); u, x 10-10 gm-1s-1Pa-1; n, g.mm m−2. h−1.kPa−1; p, x 10-8 cm3m-1s-1Pa-1 

 

 
Materials Method Thickness, mm Property Reference 

Tensile strength, 

MPa 

Elongation, % Water vapour 

permeability 

Oxygen 

permeability 

Starch*, carboxymethyl cellulose, 

glycerol  

casting - 2.0–30.0 4.0–86.0 - - Tongdeesoontorn et al. 

2011 

Starch*, cornstarch, glycerin, 

stearic acid, Sugarcane bagasse 

casting - 2.20-3.80 10.4–57.2 - - Vallejos et al. 2011 

Starch*, glycerol, carnauba wax 

type 1, stearic acid 

casting 0.128 - 0.132 0.25–2.14 19.30–51.06 32.75–54.74R - Chiumarelli& Hubinger 

2012 

Starch*, chitosan, glycerol extruder 0.19–0.23 085-2.71 21.95-74.04 1.00–2.22u - Pelissari et al. 2012 

Starch*, natural sodium 

montmorillonite, ethanol, 

casting 0.077-0.092 1.85–6.06 89.9–213.4 3.36–7.08n 36,979.2-

366,163.2p 

Souza et al. 2012 
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glycerol, liquid inverted sugar, 

sucrose 

Starch*, wood fibre, glycerol casting 0.101–0.138 1.50–21.32 12.9–201.5 negligible - Romera et al. 2012 

Starch*, xanthan gum, potassium 

sorbate, glycerol 

casting 0. 18–0.26 0.38–2.00 71.6-280.6 0.17–0.23u -  Arismendi et al. 2013 

Starch*, glycerol, β-zeolite       

nano-crystal /Na-beidellite  

casting 0.148–0.210 1.40–2.70 25.0–110.0 2.3–3.5u - Belibi et al. 2013 

 

Starch*, glycerol,  agar, span80 casting 0.027-0.046 – – 0.33–0.56u 402.0-496.0p Maran et al. 2013 

Flour, Glycerol, Sorbitol, 

Polyethylene glycol 

casting 0.096–0.099 5.29–28.65 4.13–28.24 31.20–36.68** 48.67-55.33T Suppakul et al. 2013 

Starch*, cashew tree gum, 

carnauba wax, tween80, span80, 

glycerol 

Extruder 0.15 0.76-1.48 76.5–136.3 3.70–6.70uv - Rodrigues et al. 2014 

 

* Commercial, native; ** Water vapour transmission rate, g / (m2.day); u, x 10-10 g m-1s-1Pa-1; uv, g mmkPa-1h-1m-2; n, g.mm m−2. d−1.kPa−1; p, x 10-8 cm3m-1s-1Pa-1 ; R, water 

vapour resistance (scm-1); T, oxygen transmission rate (cm3m-2d-1atm)              
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The greatest practical challenges with cassava BPM developments using conventional 

approaches are associated with starch based matrices limitations in industrial application 

of food packaging materials. In the last decade, there has been intensified research on 

cassava material physicochemical and functional properties (mechanical, barrier and 

thermal) (Table 1.2) and antimicrobial (Table 1.3) in order to attain functional 

properties closer to the traditional plastic packages. Unfortunately, the approach has 

been a piecemeal development, associated with uncontrolled variability in material 

properties (Tables 1.2).  This is due to native cassava starch inherent polar and 

hydrophilic nature, brittleness, resultant inferior functional properties and vulnerability 

to degradation. In order to improve starch properties, its matrices have to be modified to 

enhance process stability, performance and biocompatibility (see section 5). While 

improvers have shown to yield better properties, structure and general appearance of 

BPM (see section 5), they have the disadvantage of imparting unnecessary colours to 

the starch films leading to variations in opaqueness (Tumwesigye et al., 2016b). 

Additionally, various starch reinforcements tend to distort film morphology and 

introduce surface heterogeneity (de Moraes, Muller, & Laurindo, 2012).   Although it 

has sufficed to extrinsically modify the starches and cellulose derivatives prior to or 

during matrix formulations to make them more highly functional, it has rendered the 

process lengthier and this could perhaps explain the high production costs, perhaps due 

to non-cost effectiveness and energy inefficiency of feedstocks. 

 

In any case, the trend to focus on property improvements without considerations of the 

holistic approach, which considers useful validation information on package-product 

compatibility and behaviour during realistic distribution could account for food 

packaging application limitations. For example, by saying a given property reduced, 

improved, increased, etc. without testing/validating the research outputs’ performance 

with target products could be the major cause for low end use adoption of these 

materials. Most developed films did not include validation pathways in situ that 

represent the real conditions while considering envisaged applications. To put it right, 

most techniques applied in situ tend to differ from ones developed by research in vitro.  

Generally, wide material property variations, which are not optimised and directed, had 

made it difficult for food industry to compare results and make objective application 

decisions.  
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Limitations still lie in optimisations, modelling or simulations to bring out the optimum 

performance of films and coatings. According to Van Boekel, (2008), a dynamic 

modelling approach permits advancement of an application scheme specific to a product 

and to select the most suitable regimes without the necessity for extensive testing of the 

product and indicator. Limited reports have focused on simulation for mechanical and 

barrier properties of starch-based composite matrix (Arismendi et al., 2013; Suppakul, 

Chalernsook, Ratisuthawat, Prapasitthi, & Munchukangwan, 2013). In spite of these 

advantages, few of these packaging systems are commercialized because of high cost, 

strict safety and hygiene regulations or limited consumer acceptance. Therefore more 

research is needed to develop cheaper, more easily applicable and effective packaging 

systems for various foods.  

 

Careful manipulations in the perforation’s density, pore localisations, dimensions, 

micropore structure, and the technique of microperforation can effectively permit 

desired in-package environment envisaged for a named product. However, the current 

concept of developing biobased materials to cater for different properties and functions 

could influence a particular product’ in-package atmosphere, thereby making it difficult 

to match product and package properties. Besides, the constant use of perforations could 

make the process inefficient, damage the package or introduce contaminants particularly 

in dust-prone areas with differentiated pressures. 

 

1.4 Recent trends on cassava biobased material improvement and application 

 

Recently, some research has been concentrated on design techniques to improve the 

casting technique and starch biobased materials towards prescribing a uniform and 

standard system. In addition, work has also been intensified in reinforcing starch 

matrices in order to improve the properties by which tailored materials would be 

developed. Industries have demanded efficient and economy biobased materials, which 

has resulted into new innovations, with robust and cheap production processes. 

 

 

 



Chapter 1                                                                                                   Literature review 

13 
 

 

8.2.1.1 1.4.1 Tape casting technique (TCT) 

 

Until recently solution casting has been the widely used technique for laboratory-scale 

production of biobased materials. However, with the shortfalls of this technique to 

produce uniform materials, handle thicker gels or adjust when varying production 

volumes, alternative techniques have been investigated. Among the techniques, tape 

casting, successful in paper, plastic, ceramics and paint industries (Mistler & Twiname, 

2000), has been investigated for large-scale material production that delivers a 

continuous process with success. TCT is a promising tool for production of multi-

layered (Tanimoto, Hayakawa, Sakae, & Nemoto, 2006), thick, strong, uniform, varying 

size biocomposites films at industrial scale (de Moraes, Scheibe, Augusto, Carciofi, & 

Laurindo, 2015; de Moraes, Scheibe, Sereno, & Laurindo, 2013). Typically, TCT 

consists of micrometric screw-adjusted blade that helps spread the cast solution on 

batch or continuous carrier-tapes, ensuring uniform thickness (0.2-1mm) of films 

(Larotonda, 2007). The nature of cast solution in terms of rheological behaviour were 

previously well-described (de Moraes et al., 2013).  

Even though materials produced by tape casting are reported to be homogeneous, 

reproducible and showing quick drying (60⁰C, 2.3h) ( de Moraes et al., 2015), their 

stability under high temperatures such roll-to-roll processing (Zucca et al., 2015) 

remains to be empirically proven.  

 

8.2.1.2 1.4.2 Starch reinforcement techniques 

 

Reinforcing starch-based materials helps to overcome weaknesses inherent in starch 

matrices (mentioned previously) in order to improve their mechanical, water resistance, 

and generally functional properties. Starch reinforcements have been mainly studied for 

improving mechanical (Scheibe, De Moraes, & Laurindo, 2014; Versino & García, 

2014; Zainuddin, Ahmad, Kargarzadeh, Abdullah, & Dufresne, 2013), improving water 

resistance (Rodrigues et al., 2014) or barrier to moisture and gas (Argüello-García et al., 

2014; Cardoso et al., 2005; De Pauli, Quast, Demiate, & Sakanaka, 2011).  

While reinforcements improve starch material properties, they have the disadvantage of 

exhibiting non-cost effectiveness and energy inefficiency and their processing at source 

since in all the starch reinforcements, fillers and reinforcers are externally sourced. This 
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entails many individual stand-alone processes executed independently of each other. 

The extra energy and costs implied in stand-alone developments could be avoided if the 

individual processes were integrated.  

 

8.2.1.3 1.4.3 Antimicrobial biobased materials intended for active packaging 

 

The rapid development of cassava biobased materials, in particular the edible types, 

their compatibility to packaging material development, and successful research into 

extraction of bioactive functional natural compounds, has led to functional food 

packaging material development (de Souza, Dias, Sousa, & Tadini, 2014; Flores, Famá, 

Rojas, Goyanes, & Gerschenson, 2007; Kechichian, Ditchfield, Veiga-Santos, & Tadini, 

2010). Different antimicrobial substances were added to cassava biobased materials in 

different ways intended to deliver various functions (Table 1.3). However, research 

information on the influence of antimicrobial packaging materials on in-package 

atmospheres and corresponding packed products’ quality and safety is scanty, and this 

presents challenges to their full potential use in modified atmospheric packaging. 
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Table 1.3. Summary of cassava biobased material antimicrobial properties  

 
Source of 

antimicrobials 

Active substance Incorporation style 

in starch based 

matrix  

Intended study/function Reference 

Fruit and vegetable 

pomace extracts 

anthocyanin, flavonoids  

& chlorophyll 

direct addition  antioxidant properties (general) Hyashi et al. 2006 

Commercial Potassium sorbate direct addition Antimicrobial release model and kinetics 

(general) 

Flores et al. 2007 

Commercial chitosan direct addition Fungistatic activity (general) Zhong & Xia, 2008 

Commercial chitosan direct addition antimicrobial performance on global quality of 

salmon muscle 

 

Vásconez et al. 2009 

Commercial Chitosan & oregano  

essential oil 

direct addition antimicrobial against Bacillus cereus ATCC 

25923, E. coli ATCC 25922, S. aureus 

FRI196e, and S. enteritidis, 

Pelissari et al. 2009 

Commercial clove powder, volatile oils, cinnamon 

powder, red pepper powder, honey 

propolis, coffee powder & orange 

essential oil  

direct addition antimicrobial against yeast & mold counts of 

white pan 

bread slices 

Kechichian et al. 2010 

Mango & acerola pulps carotenoid,  polyphenol, & vitamin C direct addition antioxidants  to preserve palm oil Souza et al 2011 

Commercial nisin & potassium sorbate direct addition antimicrobial effectiveness against Listeria 

innocua & Zygosaccharomyces bailii 

Basch et al. 2012 
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Commercial natamycin direct addition antimicrobial effectiveness against 

Saccharomyces cerevisiae 

Ollé Resa et al 2013 

Commercial cinnamon 

& clove essential oils 

cinnamaldehyde & eugenol 

 

direct addition inhibitory against Penicillium commune & 

Eurotium amstelodami 

Souza et al. 2013 

Commercial potassium sorbate direct addition effective antimicrobial barrier against  

ygosaccharomyces bailii 

Arismendi et al. 2013 

Commercial cin-namaldehyde supercritical fluid 

technology 

Antimicrobial  inhibition of proliferation of 

Penicillium commune & Eurotium amstelodami 

fungi in bread products 

de Souza et al. 2014 

Green tea and palm oil 

carotenoids extracts 

peroxides, total carotenoids, and total 

polyphenol 

 

direct addition inhibit oxidation & as a scavenger of oxygen 

radicals; oxidative 

protection in packaged butter 

Perazzo et al. 2014 

Red propolis & licuri 

leaves 

 

Propolis & cellulose nanocrystals 

extracts 

direct addition coagulase-positive staphylococci in cheese curds 

& antioxidant against  

butter 

Costa et al. 2014 

oregano  & clove 

essential 

oils 

carvacrol (2-methyl-5-[1-

methylethyl]phenol) and thymol 

(5-methyl-2-[1-methylethyl)phenol]) 

direct addition & 

surface coating 

antimicrobial against molds, yeasts, & Gram-

positive and Gram-negative bacteria 

Debiagi et al. 2014 
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Hayashi & Veiga-santos, (2006) observed a significant antioxidant effect on the packed 

soybean oil with grape pomace (1.69 and 8.16% total solids) while (Flores et al., (2007) 

found that high amorphous film matrix relaxation greatly contributes to sorbate release 

kinetics. The cassava-chitosan fungistatic activities inhibited growth of phytopathogen 

on mango fruit surfaces (Q. P. Zhong & Xia, 2008) and reduced Zygosaccharomyces 

bailii external spoilage in a semisolid product but were not effective against 

Lactobacillus spp. (Vásconez, Flores, Campos, Alvarado, & Gerschenson, 2009), while 

those with oregano essential oil had a higher inhibition on B. cereus than S. enteritidis 

(Franciele M Pelissari et al., 2009). Films containing mango and acerola pulps with 

carotenoids and total polyphenols presented antioxidant effectiveness while acerola pulp 

vitamin C was a pro-oxidant agent (de Souza et al., 2014). Ollé Resa, Gerschenson, & 

Jagus, (2013) reported antimicrobial effectiveness against bacterial or yeast culture with 

nisin and potassium sorbate in starch films, while Souza, Goto, Mainardi, Coelho, & 

Tadini, (2013) reported fungicidal action against Saccharomyces cerevisiae with starch 

matrix containing natamycin. Similar results were observed on effective antimicrobial 

activity against P. commune and E. amstelodami bread product fungi by cinnamon and 

clove essential (Souza et al., 2013) and effective antimicrobial barrier against 

Zygosaccharomyces bailii external contamination (Arismendi et al., 2013). de Souza et 

al., (2014) reported success in supercritical impregnation of cinnamaldehyde (2.49 ± 

0.30 mgCN/gfilm, 250 bar). Films with green tea extract and oil palm colorant exhibited 

oxidative protection in packaged butter, by decrease peroxide index (Perazzo et al., 

2014), while those with cellulose nanocrystals (0–1%) and activated with alcoholic 

extracts of red propolis were effective on coagulase-positive staphylococci in cheese 

curds and reduced the oxidation of butter during storage (Costa, Druzian, Machado, De 

Souza, & Guimaraes, 2014).     

 

8.2.1.4 1.4.4 Nutri-enrichment of biobased materials intended for active packaging 

 

Among the few studies in active packaging is the nutrient enhancement of cassava 

biobased materials. Within the last 5 years, the potential to use gluconate iron in 

cassava-based edible films has been demonstrated by Castro de Cruz, (2012). The study 

evaluated the ability and efficiency of cassava-glycerol matrix to bind nutraceuticals 

and the impact of gluconate iron on its properties. The author reported that 
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incorporating nutraceutical into starch films (3% cassava, 30% glycerol and 97% water) 

resulted in: (i) change of homogeneous, smooth and film colour from transparent to 

yellowish translucent films, and (ii) an increase in properties (tensile strength, 

elongation at break and viscosity). Nonetheless, little is still known about turning 

cassava biobased materials as efficient and self-sustaining excipients for administering 

essential nutrient supplements to the malnourished population. 

 

8.2.1.5 1.4.5 Utilisation of valuable derivatives and by-products in cassava wastes 

 

As mentioned earlier, most studies have evaluated potential of extrinsic fillers and 

reinforcements for starch modification without considering intrinsic modifiers inherent 

in cassava parts.  Daud, Kassim, Aripin, Awang, & Hatta, (2013) characterised the 

chemical composition of cassava waste peel (% w/w) as: holocellulose (cellulose + 

hemicellulose) (66.0), cellulose (37.9), hemicellulose (23.9), lignin (7.5), hot water 

solubility (7.6), 1% NaOH solubility (27.5), ash (4.5) and moisture (14.0).  

However, within the last 5 years research into use of cassava waste as reinforcement 

fillers and source of bioactive extracts has been intensified. Wicaksono, Syamsu, 

Yuliasih, & Nasir, (2013) studied cassava bagasse-based cellulose nanofiber (5-8 nm) 

for application on tapioca-film. The authors reported good stability of cellulose 

nanofiber suspensions, successful removal of hemicelluloses and lignin from the fibre 

structure and improved films tensile strength and decreased elongation at break by 69%. 

Other studies include use of: (i) cassava roots peel and bagasse as natural fillers of 

thermoplastic materials using cassava bagasse (1.5%) to increased elastic modulus (by 

260%) and maximum tensile stress (by 128%) of TPS composites (Versino, López, & 

García, 2015); (ii) fibrous residue of cassava starch extraction to achieve UV-barrier 

capacity and water vapour barrier properties (14.6 ± 0.7 10−11g/m s Pa), tensile 

strength (18.01 ± 0.19 MPa), mechanical resistance increase (>900%) with 1.5% 

residue,  eco-compatible heat-sealed materials (Versino & García, 2014); (iii) cassava 

bagasse to develop biodegradable trays with effective antimicrobial activity  against 

moulds, yeasts, and Gram-positive and Gram-negative bacteria, less resistant and more 

flexible trays, with a decrease in the water absorption and adsorption capacities 

(Debiagi, Kobayashi, Nakazato, Panagio, & Mali, 2014).  
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While the above studies show good progress in waste minimisation, they are limited in 

use by the lack of an integrated process design which would otherwise reduce the 

energy and costs implied in individual processes. To overcome this scenario, an 

improved process SRRC, which includes components of integrated process was studied 

(discussed in subsection 1.6.1). 

 

1.5 Untapped conventional techniques suitable for cassava biobased system 

 

8.2.1.6 1.5.1 Application of modified atmosphere (MAP) and active (AP) 

packaging systems: Desired package atmosphere 

 

The desired atmosphere (DA) packaging demands manipulation of the environment 

inside the package as a function of both inside and outside package forces. Currently, 

this has been realised, for perishable products by mass balances between respiration 

rates and fluid (air, moisture) transfer through the packaging materials using modified 

atmosphere packaging, passive (MAP) and active (AP) techniques. In MAP, the DA 

develops naturally as a function of product respiration and fluid diffusion through the 

package, whereas AP occurs as a result of conditioning atmosphere either by gas 

replacement, package manipulation or scavengers/absorbers introduction. 

 

Different products require different DA packaging, thus the package environment is 

developed for specified products which also depend on the type of packaging material, 

storage temperature, storage relative humidity and their specific respiration rates. Since 

the external environment has influence on the internal environment, the permeability 

properties of the package, gases (O2, CO2), liquid (water vapour) and temperature need 

to be matched to the product respiration rate in order to attain equilibrium modified 

atmosphere (EMA).   The EMA packaging can ensure extended shelf-life of products. 

For EMA package design purposes, tolerance limits for O2, CO2, temperature and 

respiratory quotient of fresh have been suggested as 1-3%, 10-20%, 0-15⁰C and 0.7-1.3 

respectively depending on the product (Yam & Lee, 1995). Yam & Lee (1995) reported 

that keeping the O2 concentration and temperature above, and CO2 concentration below 

tolerance limits can ensure aerobic and anaerobic trade-offs. Other studies have 

suggested 3-6% O2 and 2-10% CO2 to achieve microbial control and extend shelf-life of 
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various fresh produce (reviewed by Oliveira et al., 2015). In other studies, Islam et al. 

(2011) reported 16-18% O2 and 3-4% CO2 in ‘Madison’ tomato packages, showing 

proper levels for MA storage in 20,000cc breathable film at 5⁰C. Guan et al. (2008) 

reported that the optimal conditions to keep high quality tomato were obtained by MAP 

during storage at 0⁰C for 29 days, independently of the film thickness, in which the 

adequate gas composition was 14.3%-14.5% O2 and 4.2-5.6% CO2. 

 

To date no effective EMA packaging system has been developed. This could be due to 

the many factors influencing the environment of the package that have not been 

considered in the design. Factors that are related to existence of additional gases with 

different functional uses in the package like N2 for maintaining the shape of the 

package, and nitrous oxide as an antimicrobial (Meng et al., 2012). Other factors 

include: (i) inadequate models for accurate prediction of every constraint of the MAP 

system (Yam & Lee, 1995); (ii) water, energy and heat generated by product 

respiration; (iii) limited adaptations of biobased materials to MAP designs resulting in 

limited knowledge of package permeability (P) and activation energies (AE) that match 

product P and AE. The P, AE and CO2/O2 permselectivity (Al-ati & Hotchkiss, 2003) of 

most widely packaging films for fresh fruits and vegetables that can be used as 

reference to develop biobased materials have been reviewed (Yam & Lee, 1995); (iv) 

only unsteady states have been used to design MAP systems, and has not been solved 

for long storage products which require the dynamic equilibrium state. MAP dynamic 

equilibrium state describes the steady state in which CO2 evolution and O2 consumption 

rates balance with CO2 efflux and O2 influx through the package (Yam & Lee, 1995); 

(v) limited models that describe respiration change with time for long storage products; 

(vi) the influence of external air velocity on in-package atmosphere; and (vii) 

interactions between scavengers or absorbers and in-package environment and its effect 

on the EMA has not been conclusively studied for different foods and materials.  

Another big challenge to the design of MAP is related to the many cassava starch 

biobased materials that have been developed in the last 5-10 years. These materials have 

been prepared differently from the ones used commercially, particularly those intended 

for active packaging with different antimicrobial bioactives. The bioactives can alter the 

package environment and affect the shelf-life of packed products. Despite use of safe 

antimicrobial compounds to ensure product safety during migration, no research is 
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found in literature that includes cassava biobased materials in MAP design. It is 

important to validate the performance of the package. Unfortunately this has not been 

done for most developed biobased materials.   

 

Most of the conventional studies to address: (i) MAP have been focused on 

mathematical models for improving non-perforated packages and perforated packages 

by optimising respiration rate, storage temperature, gas compositions, mass transport 

through the package (Yam & Lee, 1995; Pandey et al., 2012;); and (ii) AP use of 

absorbers and scavengers (Rodriguez-Aguilera & Oliveira, 2009; Lee et al., 2015).  

 

8.2.1.7 1.5.2 Mathematical models 

 

Modelling respiration rate  

 

Most of the conventional studies to address MAP have been focused on: (i) 

mathematical models for improving non-perforated packages and perforated packages 

by modelling respiration rate as a function of storage temperature and gas compositions; 

(ii) mass transport through the package (Yam & Lee, 1995; Pandey et al., 2012;); and 

(iii) active MAP (Rodriguez-Aguilera & Oliveira, 2009; Lee et al., 2015).  

 

The RR for closed system involves two major chemical reactions occurring in the 

package, aerobic (Eqn. 1.1) and anaerobic (Eqn. 1.2). Aerobic and anaerobic 

respirations are expressed as: 

 

C6H12O6 + 6O2          enzymes     6CO2 + H2O + HEAT                1.1 

 

 

C6H12O6        enzymes          2CO2 + 2C2H5O + H2O + HEAT    1.2 

 

 

The model approaches to respiration rates can be achieved either by empirical models or 

kinetic models that exploit Arrhenius equations.  
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Temperature is the most important factor that highly influences respiration rate (RR) 

including components that determine RR. Thus, the Arrhenius equation (Eqn. 1.3) has 

been used to measure temperature dependence of respiration rate (Bhande et al 2008). 

 

R# 	= 	R#&'
# ×e

*
+,
-
	
.
/
	*

.
/012 	        1.3  

 

Thus, the corresponding O2 rate consumption and CO2 rate consumption are derived and 

shown in Eqns. 1.4 and 1.5. 
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where, Rr, respiration rate; Rref, respiration rate at reference temperature (Tref); Ea, 

activation energy; C, universal gas constant; T, temperature (K).  

 

An alternative approach to determine the respiration rate as a function of temperature is 

to use the Q10 influence, corresponding to 10⁰C rise in temperature (Eq. 1.6) 

(Rodriguez-Aguilera & Oliveira, 2009). 

 

Q;< 	= 	
=>
=.

.?
/>@/.         1.6 

 

where, Rn, respiration rate at temperature Tn; and R1, respiration rate at temperature T1. 

Q10 represents values from 1 to n depending on the product. The Q10 range values for 

horticultural products at different temperatures have been reviewed by Yam & Lee, 

(1995) as: 2.5-4.0 (0-10⁰C); 2.0-2.5 (10-20⁰C); 1.5-2.0 (20-30⁰C); 1.5-2.0 (30-40⁰C). 

 

The closed system of measuring respiration rates has been reported as the most efficient 

among the three methods for measuring the gas dependence of respiration rates, and 

have been computed and derived using Eqns. 1.7, 1.8 (Yam & Lee, 1995) in order to fit 

to empirical data with Eqns. 1.9 and 1.10. 
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R34 	=
A 34
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         1.8 

 

OJ 	= 21 − NB

O.	P	Q. -.
         1.9 

 

COJ 	= 21 − NB

O4	P	Q4 -4
                    1.10 

 

Modelling mass transport through the packaging materials for MAP 

 

Packaging materials are other important aspect, which highly influences MAP, and their 

admittance and expulsion of fluids and regulation of external and internal pressure 

deserve attention. 

 

Conventionally, MAP has been determined for non-perforated and perforated films. As 

a barrier to the whole transfer process, the permeation of substances across it constitutes 

three major phases (Rodriguez-Aguilera & Oliveira); (i) adsorption on the outside 

package surface; (ii) transmission through the package; and desorption on the inside 

package surface to the headspace. To understand the transfer process, the term 

“permeability coefficient” (PC) has been used, which can be defined as, ‘the volume 

flow rate of an incompressible fluid through a unit cube porous substance at a unit 

pressure difference’. Thus, two terms have been used to define the PC, as the product of 

a solubility coefficient, the thermodynamic parameter (amount of permeant molecules a 

packaging material can take up), and diffusion coefficient/diffusivity, the kinetic 

parameter (permeant mobility). 

 

Based on the above theory, several models have been fitted, modified and new ones 

developed depending on the intended product. The recent investigated 

phenomenologically based mathematical model (Pandey & Goswami, 2012) example 

describes the modified atmosphere composition evolution in capsicum perforated 

package to predict performance under dynamic conditions. Since it is perforated it 
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considers gas transpiration in parallel to the packaging material and Fick’s law of 

diffusion (Eqns. 1.11 & 1.12) 

 

QS 	= 	q'' +	qV'                               1.11 

 

q'' 	= 	
WX

Y
	 CS5ZB −	CS[\                    1.12 

 

where, Qg, total gas (g) flow; qff, gas (g) flow across package; qpf, gas (g flow through 

the pore; A, film cross-sectional area (m2); δ, film permeability; and l, film thickness 

(m). 

 

Based on Geankoplis (2003), the O2 and CO2 mean free path, λ, (m) at 1 atmosphere 

and                    T = 283.2 K are 0.0673 and 0.0762 l µm; 

 

�	 = 	 ].J	_
E
	 =H

J`G
                   1.13 

 

where, µ, viscosity (PaS); P, pressure (N/m2); T, temperature (K); W, molecular weight; 

and R, universal gas constant. 

Using Fick’s equation (Eqn. 1.12) and Knudsen number (Kn = λ/2r) and when r ≤ 

1/100, where r, mean perforation diameter, diffusion flux can be expressed as: 

 

qV' 	= 	
abcd	 7e

6fg*	7eh>

Yd
	                  1.14 

 

where, Dg, diffusion flux of gs (g) through pore (P); Ap, pore area; lp, effective path 

length. 

Substituting Ug = DgAp / lp (the overall mass transfer coefficient in terms of effective 

permeability) in Eqn. 1.14, then: 

 

qV' 	= 	ij CS5ZB −	CS[\                   1.15  

 

For n perforations,  
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qV' 	= 	kij CS5ZB −	CS[\                   1.16 

 

Combining Eqns. 1.15-1.16, and applying mass balance for the O2 and CO2 gas 

exchange in a p perforation package, the O2 and CO2 gas volumetric change in-package 

MAP with respiring produce are expressed as Eqns.1.17 and 1.18: 
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                1.17 

 
lm{n4
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vp −	

y{n4z	

r
                1.18 

 

where, st4
vp and s|t4

vp , s<4
tuo and s|<4

tuo, volumetric fraction of O2 and CO2 gases (v/v) in 

the container and at ambient conditions at time t (h) respectively; it4 and ki|t4, O2 and 

CO2 effective permeability through perforations (cm³ h-1); ~t4 and ~|t4, permeability of 

film to O2 and CO2 gases (ml m m-2 h-1 atm-1); �t4 and �|t4,  O2 and CO2 consumption 

and production rates of the packed product (ml kg-1 h-1); M, product mass in the 

package (kg); and V, package free volume (ml).               

 

8.2.1.8 1.5.3 Active packaging by fluid regulators 

 

Fluid regulators (FR) can be thought of as a third generation strategy to try and design 

efficient MAP for extending the storage life of products. In previous studies, much 

efforts were focused on modified in-package atmosphere by manipulating gases, 

however, the impact of moisture and residual O2 posed on MAP has resulted in use of 

FR.  This is a downstream packaging development stage that aims to use additives 

inside the package in order to modify the current in-package environment and obtain the 

desired environment at a future date. In theory, the product, the package and the 

environment should associate in positive manner to maintain product quality. However, 

this is not the case because some additives can be influenced by many factors such type 

of package material and highly variable environments. The current FR used include: (i) 

oxygen, ethylene and carbon-dioxide scavengers; (ii) carbon-dioxide emitters; and 
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moisture absorbers (Santiago-Silva et al., 2009). This section reviews the application of 

these FR to modify in-package environment. 

 

For gas scavengers, the reactive compounds are enclosed in sachets or stickers 

associated to the packaging material or directly incorporated into the packaging material 

(Charles et al., 2006). The common oxygen scavengers iron powder, ascorbic acid, 

photosensitive polymers and enzymes reduce oxygen in oxidation-reduction manner. 

Levels of oxygen reduction to 0.01% and (0.3-3%) in the conventional systems of 

modified atmosphere, vacuum or substitution of internal atmosphere for inert gas have 

been reported (Cruz et al., 2007). The list of commercial oxygen scavengers have been 

extensively reviewed (Rodriguez-Aguilera & Oliveira, 2009). Cruz et al. (2007) 

reported increase in oxygen absorption by the sachet when the relative humidity 

increase irrespective of temperature. They reported that the oxygen - absorbing sachets 

were most active under 25 ± 2 ºC and 85 % relative humidity. At ambient condition (25 

± 2 ºC/75 % RH) the rate of oxygen absorbed was 50 ml/day and 18.5 ml/day for 10 ± 

2ºC. 

 

Carbon-dioxide (CO2) is sometimes applied as antimicrobial gas, and its balance in 

packages can contribute to the regulation of respiration. Conversely, high CO2 levels 

can lead to anoxia conditions, and the use of CO2 absorbers becomes necessary. They 

are reportedly applied in products where package volume and appearance are critical, 

i.e. peanuts or potato-crisps (Rodriguez-Aguilera & Oliveira, 2009). 

 

Similarly, in dry packed products, condensation can occur resulting in loss of product 

quality. Silica gel is a common moisture absorber.  Different types of moisture 

absorbers have been reported (Ozdemir et al., 2005): (i) drip-absorbent sheets 

containing a super-absorbent polymer in between two layers; (ii) inclusion of 

humectants which are placed between two of plastic film layers. They are highly 

permeable to water vapour; and (iii) moisture absorbent sachets, commonly used in dry 

foods. 

 

Although fluid regulators are important in complementing the in-package atmosphere, 

they have not been extensively investigated in cassava biobased materials. Use of 
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absorbers, emitters and scavengers could face the following challenges: (i) the 

differences in material permeability; (ii) the addition of different bioactives with 

different physical and chemical properties; and (iii) the cost implication in designing 

different shapes, different amounts in-sachet contents to cater for fluctuations in 

package environment. 

 

1.6 Emerging trends in integrated sustainable process design framework 

 

 Despite recent developments, in the last 5 years, to improve the biobased material 

production technologies, processes and functional properties, the proactive and robust 

holistic approach system is still non-existent. The application of integrated approaches 

to the development of materials hinged on cost-effectiveness, energy efficiency and zero 

environmental impact can be a promise for developing sustainable biobased materials 

tailored for broad applications. Among the green technologies, very few cassava 

biobased material development studies have been reported in literature, and include: (i) 

simultaneous release recovery cyanogenesis (SRRC) (Tumwesigye et al., 2016a); and 

(ii) supercritical fluid technology (de Souza et al., 2014). 

 

8.2.1.9 1.6.1 The SRRC concept: exploiting intact (whole) cassava bitter cassava as 

a potential sustainable source of green biomaterials 

 

The demand for low-cost material resources has led to emergency in research of 

unexploited plants-derived feedstock (UF) (Tumwesigye et al., 2016a). Bitter cassava 

(BC) is an example of UF which has not been conventionally utilised in biobased 

material development. The BC has many similarities with sweet cassava, with the two 

differing in the amount of total cyanogen (TC). The BC contains 900-2000 ppm TC 

(Cardoso et al., 2005; Tumwesigye et al., 2016a), whereas sweet cassava has lower TC 

(0 ≥ TC ≤ 100 ppm (Tumwesigye, Baguma, Kyamuhangire, & Mpango, 2006). The 

properties and benefits that make bitter cassava a sustainable feedstock source for 

biobased materials have been reported (Tumwesigye et al., 2006): (i) adaptation to 

diverse climatic conditions; (ii) high tolerance to drought, low soil fertility and low soil 

structure; (iii) high yield in energy per unit area per unit labour; (iv) planting and 

harvesting time allow for a greater flexibility; (v) the economically viable parts (FAO, 
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2007); (vi) gluten-free; and (vii) the high yield and bright colours of the biopolymers 

including the resistance to pests, rodents and swine (Tumwesigye et al., 2006). Latest 

findings by Tumwesigye et al., (2016a) had explored another benefit of BC as an 

effective biomaterial for production of food and non-food packages, and with 

significantly better properties than sweet cassava films.  

 

However, during traditional processing, huge amount of waste is generated, in which 16 

-30% are waste solids (peels, fibres, rejects) and wastewaters with unspecified total 

cyanogens (Heuzé et al., 2013). To transform BC into a green biomaterial required new 

approaches. 

 

Simultaneous release recovery cyanogenesis (SRRC) 

Improved novel alternative methodologies have gained interest in most processing 

research, and in addition to the principle of green process, more attention is likely. 

Simultaneous release recovery cyanogenesis (SRRC) can be defined as an improved 

downstream process that is capable of exploiting intrinsic system’s nature, under 

predetermined conditions, to cause chemical and physical transformations in the 

products (Figure 1.2).  

 
Fig. 1.2 Overview of simultaneous release recovery cyanogenesis (SRRC) concept using intact 

(whole) cassava for sustainable waste minimisation, recovery of valuable biopolymer 

derivatives, and food packaging development. 
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Recently, SRRC technique was applied to investigate the potential of using intact bitter 

cassava to minimise wastes and produce acceptable biopolymer derivatives capable of 

developing food packaging materials (Tumwesigye et al., 2016a). The authors reported 

significantly (p < 0.05) higher biopolymer derivative yields and 16% waste decrease. 

Furthermore, the method effectively reduced total cyanogen content from > 1,000 ppm 

to < 3 ppm, which is within acceptable limits for use of these poisonous cassava 

derivatives in food processing. More transparent, homogeneous and strong packaging 

materials were developed and found to be suitable for packaging application like current 

commercial packages which are on the market. An added advantage of SRRC is the 

development of transparent films as a requirement for food packaging. Most cellulose 

and other starch reinforced biocomposites produce coloured films suitable for only 

foods that undergo oxidation. The significance of the SRRC outcome implies that 

peeling cassava can be avoided (Tumwesigye et al., 2016a). When this happens, then 

there is limited chance of wastes accumulation into the environment. This could also 

have a possibility of reducing amount of water, energy and costs implications in: (i) 

extrinsic processing and modification of starch using reinforcements; and (ii) waste 

management. Moreover, the wastes are converted into useful added value products, 

human safety ensured, environmental impact reduced, and social-economic welfare of 

society improved.  

The SRRC concept can be an initial step for the regenerative design models for the 

future to create sustainable systems, which integrate materials needs, society socio-

economic requirements and environmental integrity. 

   

8.2.1.10 1.6.2 Supercritical fluid technology (SFT) 

 

As noted previously, interest in successful active packaging research in cassava 

biobased materials has grown tremendously. One of the potential technologies that can 

improve multiple properties of cassava biobased materials, which the conventional 

casting method failed to attain, is supercritical fluids. This might solve their slow 

adoption and lead to accelerated and widened application. The most SFT used technique 

is supercritical solvent impregnation (SSI) method due to the various individual SFT 

unique properties (Cooper, 2003). SSI has been successfully applied in the development 
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of biomedical materials intended for improved sustained drug delivery devices (Dias et 

al., 2011) and improved scaffold properties for tissue engineering applications 

(Reverchon & Cardea, 2012). The SSI application in active packaging research in 

cassava is limited (Souza et al., 2013).   

 

SFT antimicrobial active package development 

 

Among the major roadblocks in active packaging of cassava biobased material research 

has been to find a near best technique to help in controlled loading and unloading of 

antimicrobial compounds, and in particular those that are hydrophobic in nature such as 

organic lipids. Today, only a single study using SSI (Souza et al., 2013) is found in 

literature. The effect of impregnating antimicrobial compound cinnamaldehyde (CA) in 

cassava starch-nanoclay biocomposite films via supercritical carbon-dioxide (SCCO2) 

was studied by (Souza et al., 2013), reporting successful incorporation, with highest 

conditions, CA loading (2.49 ± 0.30 mgCA/gfilm), pressure (250 bar), time (15 h) and 

at depressurization rate (10 bar min−1). They further reported that all impregnated CA 

contents, irrespective of the amounts, were able to deter P. commune growth and 

increased film surface hydrophobicity. They found that CA-treated films had reduced 

water vapour permeability (WVP) (4.09 ± 0.84) g mm m−2day−1kPa−1 than WVP 10.09 

± 0.35) g mm m−2day−1kPa−1) of untreated films. They concluded that: (i) the solubility 

of CA in SCCO2 dictated the impregnation process; and it is possible to produce better 

cassava films for packaging with supercritical fluid technology. 

 

Elsewhere, Torres, Romero, Macan, Guarda, & Galotto, (2014) investigated the 

development of a new technique for preparation of active polymers for food packaging 

using near critical and supercritical impregnation of thymol in linear low-density 

polyethylene (LLDPE) films. Using a SCCO2 pressure (7–12 MPa) and temperature 

(313K), films with thymol concentrations (between 5100 and 13,200 ppm) were 

developed. They reported a higher affinity of fatty food simulant for thymol. Using a 

phenomenological mass transfer model thymol diffusion coefficient of 7.5 × 10−13 to 

3.0 × 10−12m2 s−1 for the LLDPE films was achieved.  
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The supercritical fluid technology is encouraging and provide avenues and advantages 

for investigating the behaviour of cassava biobased materials particularly when cassava 

is a lone component in the development of active food packages. This would allow 

comparisons among cassava materials without or with different additives, and between 

cassava and non-biodegradable films. Besides, this would guide in the optimisation of 

incorporation and release of the active compounds in the packaging materials.  

 

Nano- and Micro-porous material development 

 

There is no doubt that modifying the inside package atmosphere through proper control 

of mass balances is vital to extending the shelf life of the fresh produce. It is also widely 

accepted that the package barrier properties which regulate water and gas permeation 

through the package define the success of the modified atmosphere packaging (MAP).  

However balancing the package properties and the required mass balances has eluded 

research for quite some time.  

 

Cellulose reinforced cassava starch studies have so far been conducted to regulate the 

material barrier properties (de Moraes et al., 2012; Teixeira et al., 2009; Versino et al., 

2015) and improve on MAP. While these efforts provide exciting results, it has not 

overall helped to develop effective films tailored to specific MAP of products due to 

non-validation of these materials. Besides, reinforcements distort material colour and 

heterogeneity unsuitable for packaging foods in which clear view of the inside packed 

products is a requirement. Recently, research has been intensified in investigating the 

effect of micro perforations in order to find alternatives solutions to effective MAP 

(Abdellatief et al., 2015; Hussein, Caleb, Jacobs, Manley, & Opara, 2015; Pandey & 

Goswami, 2012).  However, constant use of perforations could make the process 

inefficient, damage the package or introduce contaminants particularly in dust-prone 

areas with differentiated pressures. Although the recent development of bio-based 

polymers provides feasibility of MAP for new applications, the research is far from real. 

To address the dilemma, a new alternative approach of developing nano- and micro-

porous biobased materials using green SFT might be a potential solution to developing 

cassava materials that ensure effective MAP. The advantages of this method can be 

summarised as: (i) avoidance of pore collapse that characterises materials developed 
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with conventional liquid solvents (Cooper, 2003); (ii) works well where there are strict 

limits on number of pores, their distribution and sizes that cannot be regulated by 

conventional reinforcement methods; (iii) the ability of surficial carbon-dioxide as 

versatile wetting agent for surface modification (Cooper, 2003) and (iv) use of SCF 

does not block pores nor condense on them during surface modification of nanoporous 

materials due to its low viscosity as compared to high viscous organic liquids (Cooper, 

2003). Nanoporous polyolefin films have been prepared in supercritical carbon-dioxide 

by the delocalized crazing mechanism (4–5 MPa and higher; 35°C), with creation of 

pore diameters of several nanometres (3–7 nm) (Trofimchuk et al., 2014). This can be 

used in the development of cassava biobased breathable materials with controlled pores 

for MAP development. 

 

SCF impregnation of functional chemicals 

 

Like in impregnation of active compounds into polymeric materials, SCF can be used to 

incorporate other functional chemicals into materials. SCF impregnation has been used 

to dye textile materials (Liu et al., 2006; Ngo, Liotta, Eckert, & Kazarian, 2003) studied 

supercritical fluid impregnation of azo-dyes with varying functional groups into poly 

(methyl methacrylate) (PMMA) films using UV/Vis spectroscopy in situ. The authors 

showed that the high partition coefficients (104-105) between PMMA and SCCO2 phase 

allow incorporation of about 1% of azo-dyes into PMMA matrix. Although, in this 

study, reduction of polymer matrix-dye was reduced, similar studies can be initiated for 

cassava biobased reinforced materials to interact with bleachers and enhance functional 

efficiency. This can be possible since most chemicals dissolve in supercritical carbon-

dioxide, and bleachers like sodium bisulphite has similarities in chemical structure with 

dyes. Food grade sodium bisulphite improved the colour of intact bitter biopolymer 

derivatives (Tumwesigye et al., 2016a), with residual quantities requiring a number of 

water washings to eliminate them. Use of SCF impregnation can be used to clean 

residues and produce materials with zero chemicals and reduced costs of using dialysis 

methods. 
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SCF polymer drying  

 

There is increasing research attention for development of homogeneous polymeric 

materials such as packaging films. However, using drying ovens to remove water from 

cast solutions, has always posed challenges of non-uniformity in materials with multiple 

heterogeneous surfaces and various thicknesses. Its suffices to note that different drying 

methods for biopolymer derivatives, polymeric materials, powders and foods have been 

conducted using different techniques and environments such as convectional and non-

convectional heat ovens, ambient conditions with different airflows and at different 

temperatures. Drying materials within heterogeneous environments makes them to lose 

water vapour at dissimilar velocities that affects their surface tension to act differently, 

and this can lead to cracked and deformed surfaces.  

 Some techniques have been tested to ensure uniform thickness, homogeneity and 

smoothness of biobased material surfaces. Tumwesigye et al. (2016b) reported a 

uniform thickness of 0.025 ± 0.005 mm for all packaging films tested.  Earlier, de 

Moraes et al., (2015) studied the influence of the thickness of the spread suspension and 

the support temperature on the conductive drying rate and the properties of films 

prepared by tape casting technique. Even though the authors obtained better drying time 

(2.3 h) for 3-mm starch-fibre suspension thickness, the drying temperature (60⁰C) could 

be unsuitable for drying delicate solutions with dissimilar or no reinforcements. The 

disadvantages of heating at high temperatures were summarised (Benali & Boumghar, 

2015) as fast dehydration rates result in cracked and shrink suspensions, and loss of 

suspension transparency   

The green SCF drying method can be used to correct anomalies in cast solution drying 

to produce desired smooth and homogeneous materials. SCF drying has been used to 

dry delicate materials during their processing and synthesis (reviewed by (X. Zhang, 

Heinonen, & Levänen, 2014). In principle, SCF technology controls evaporative drying 

of materials without necessarily deforming them. Supercritical extraction of water from 

gels during drying have been reported to produce high porosity gels, with dual roles of 

increasing drying rates and influencing microstructure (Benali & Boumghar, 2015), key 

in creation of micro-pores in materials.  

(Brown, Fryer, Norton, & Bridson, 2010) studied the use of supercritical carbon-dioxide 

(SCCO2) for the removal of water from agar gels and compared to air and freeze drying. 
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Using gel formulation (with and without sucrose) and drying conditions (with and 

without ethanol as a co-solvent, flow rate and depressurisation rate) and dried with 

SCCO2, they demonstrated increase in voidage air drying (4% voidage) < supercritical 

drying with pure CO2 (48%) < supercritical drying with ethanol-modified CO2 (68%) < 

freeze drying (76%). 

Certainly, the different routes discussed above can also be utilized in processing cassava 

biopolymer derivatives, films and coatings, as proposed in Figure 1.3. 

 

 
 

Fig. 1.3 Schematic view of integration of tape casting technique and super critical carbon-

dioxide (SCCO2) for cassava biobased material drying and pore formation, as reported 

in literature (sections 5 & 6). CP, critical pressure; C, critical point; CT, critical 

temperature; A, polymer solution; B, dried film using a parallel current flow drying. 

 

SCF deposition of functional materials 

 

SCF have become popular as smart way of depositing functional bioactive compounds 

onto surfaces. Specifically, supercritical carbon-dioxide (SCCO2) has been widely 

studied for coating devices for medical and food application where traditional dip or 

spray interfered with performances such as unnecessary loss of spray or sustained 

release profile problems of thick dips (Leroux, Allémann, De Jaeghere, Doelker, & 
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Gurny, 1996). SCCO2 is preferred to other liquid coating systems due to (Hussain, Wu, 

Ampaw, & Grant, 2007): (i) to its variable density similar to that of the supercritical 

stage at a low pressure and independent of temperature at ambient conditions is 

important for controlled coatings; and (ii) surface tension and viscosity of liquid carbon 

dioxide are much lower than those of the conventional liquids, with better mass 

transport and penetration into porous materials. 

Among the SCCO2–mediated coating processes studied, can be applied in cassava 

biobased materials, in production of films with 0.5-1.5 µm thick (X. Zhang et al., 2014). 

Nonetheless, these methods have not been applied in coating cassava biopolymer 

derivatives for food packaging. There is a continuing need for efficient methods to 

produce active packaging materials for food packaging; particularly thin flexible films 

made from cassava materials. Han, (2005) reported inclusion of iron-based oxygen 

scavengering sachets inside the packages as the most successful approach. Additionally, 

desiccant materials (moisture scavengers) were included in the package in the form of a 

sachet to control the interior humidity, in addition to antimicrobial packages (Han, 

2005).  

While these sachets have shown potential to deliver the functions they are intended for, 

their functioning is moisture level dependent and can sometimes lead to non-activation, 

and potential hazard of being consumed. Besides, the extra material load can impose 

unnecessary costs. 

An alternate approach to metal-based oxygen-scavenging films is to use unique 

polymers to absorb headspace oxygen in packages. This can be achieved by applying 

SCCO2 based coatings. 

 

8.2.1.11 1.63 Plasma surface activation and functionalisation 

 

The recent rapid development of cold atmospheric plasma (CAP) for food applications, 

particularly as an effective non-thermal antimicrobial inactivation technique on surfaces 

of foods (Misra et al., 2014; Niemira, 2012; Segat, Misra, Cullen, & Innocente, 2016), 

calls for a push in surface modification of packages, the immediate contact membranes. 

Polymer materials surfaces can be modified by physical, chemical, optical and 

biomedical based techniques. Current green methods that can deliver surface 

modification efficiency include supercritical fluid technology (discussed earlier).  
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The CAP technique can be of particular interest, when applied together with the 

supercritical fluid-assisted coating technique, for effective surface modification and 

total microbial inhibition. The application of CAP in food packaging was reviewed by 

(Pankaj, Bueno-Ferrer, Misra, Milosavljević, et al., 2014a), and found to influence 

crystallinity and surface properties (roughness and contact angle) of polyethylene films 

(LDPE, HDPE) (Ataeefard, Moradian, Mirabedini, Ebrahimi, & Asiaban, 2009). 

Recently, effects of CAP on dielectric barrier discharge of zein (Pankaj, Bueno-Ferrer, 

Misra, Bourke, & Cullen, 2014b), sodium caseinate (Pankaj, Bueno-Ferrer, Misra, 

O’Neill, et al., 2014c), high amylose corn starch (HACS) (Pankaj et al., 2015a) and 

bovine gelatin (Pankaj et al., 2015a) films were studied. The authors observed that CAP 

increased zein surface roughness and equilibrium moisture content, and protein 

conformational change. The major effects observed were increased hydrophilicity and 

decreased water vapour transmission and oxygen transmission rates in sodium caseinate 

and bovine gelatin films.  

While CAP has shown potential with the films aforementioned, there is need to validate 

the results and its effectiveness, particular when it is tested on packages with packed 

foods. The fact that different foods behave differently in packages, a lot of research is 

still needed before it can be qualified. Similarly, testing the compatibility of cassava 

biobased materials and other many starch-reinforced packaging films is required to 

target different applications. 

 

1.7 Process integration (PI) as a holistic approach for cassava biobased material 

development and consumption 

 

Until very recently, most cassava biobased materials were developed following stand-

alone approaches intended for mono-functional applications. The current growth in PI 

has put pressing challenges to biobased material development. Currently, little is known 

about integrated process designs which give insights into different cassava biobased 

material property interactions and their synergistic effects on the performance, economy 

and quality of materials and products. The PI designs ensure an output material has 

multifunctional applications. This is achieved by evaluating and optimising individual 

processes, followed by integrating their impacts and synergies/ interrelationships to 
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obtain an efficient and sustainable system. The PI for cassava biobased material 

development can be achieved by integrating one or more green processes (discussed 

above) with pinch analysis and mathematical optimisations, active (AP) and modified 

atmosphere (MAP) packaging, desirable package optimisation, and package 

performance simulating real conditions (Figure 1.4). Integrating SRRC-assisted waste 

minimisation and package production as well as desirable MAP optimisation and 

validation can improve energy efficiency, reduce costs and lead to sustainable cassava 

biobased systems.  

 

 
Fig. 1.4 Flowsheet of cassava biobased materials using conventional process (a) (a1-a9) and 

proposed process considering integrated process design (b) by combining either: 

simultaneous release recovery cyanogenesis (SRRC) & desirability optimisation 

packaging design (DOPD) (b1-b5) or SRRC, superfluid technology (SFT) & 

desirability optimisation packaging design (DOPD) (c1-c4) to reduce cost and energy 

for every process.  
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E, energy source; W, water source; HCS, heating & cooling system; Pr, recovery; SH, 

solution heating; H, filter; P, pump; IT, CO2 impregnation tank; a1 & a2, series of steps 

for starch production & waste peel preparations; a3, bagasse refinement; a4, reaction 

tank; a5, biocomposite refinement, a6, solution preparation and casting; a7, drying & 

cooling; b1, pulp tank; b2, reaction tank; b3 & b3i, heating & cooling; b4, solution 

preparation and casting; c1, pulp tank; c2, reaction tank; c3, solution preparation and 

casting.    

 

8.2.1.12 1.7.1 Pinch analysis and mathematical optimisations as an 

integrated process design tool 

 

Many production processes consist of individual processes (IP) comprising several unit 

operations, which may include material production, product generation and waste 

management. The IP have to be carried in a manner that the final output product is 

economic with minimal socio-economic and environmental impact. The integration 

processes which emphasize process optimisations, component synergisms and 

mathematical models are highly regarded as sustainable systems. 

 

Among the optimization techniques, pinch analysis and mathematical optimisations 

(PAMO) have been well-studied and employed in understanding many processes. The 

PAMO has an advantage of making complicated conventional mathematical models 

more comprehensible for many processes. PAMO is used synonymously with process 

integration, and is based on computing feasible low energy and low-cost process targets 

by optimising integrated process network elements, all underpinned by better process 

understanding (Kemp, 2007). 

PAMO has been studied for various processes, and its application depends on 

conditions which define individual processes. Waste management, energy consumption, 

water, hydrogen and carbon-dioxide emission consumptions are the most studied areas 

using PAMO.  

More recently, Ho, Tan, Hashim, Lim, & Lee, (2015) studied a new application of pinch 

analysis in solid waste management planning and reported that PA predicted 20% 

carbon emission and 70% landfill paper reductions, and 20%, 85%  carbon emission,  

landfill food waste reductions. Beninca, Trierweiler, & Secchi, (2011) studied heat 

integration of an existing olefins plant by decomposing it into simpler processes, and 
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using PAMO to minimise the difficulty of the optimization problem and increase the 

possibility of finding an optimal solution. They reported that segregating the unit into 

two allowed generating feasible modification which gave better results. 

Based on this scenario, it can be concluded that PAMO can be tailored to processing 

units with different processing magnitudes.  

Grip, Larsson, Harvey, & Nilsson, (2013) demonstrated application of different tools 

(in-house simulation models, mathematical programming, exergy analysis and Pinch 

analysis) on an integrated steelmaking site. The in-house simulation models uses 

Supercalc 4 spreadsheet consisting of three main blocks: the Physical model, the 

Economic model and the Fluctuation model. The mathematical programming uses 

MILP (Mixed Integer Linear Programming) to find an optimal process configuration 

within a certain solution space. The exergy analysis uses the total entropy of system and 

surroundings.  The authors reported that exergy analysis tool is suitable for problems 

involving different types of energy and transformations between them, and Pinch 

analysis is the simplest and probably the best tool for problems involving sources and 

streams of processes with interface between them. 

The principles of pinch analysis, which were well-described by Kemp, (2007) is an 

important tool that can be applied in both large, medium and small scale processes. 

However, among the case studies in literature there is none showing using PAMO in 

cassava biobased processes. 

 

8.2.1.13 1.7.2 Desirability optimisation package design and package 

performance 

 

Desirability optimisation package design (DOPD) is a non-conventional method in 

atmosphere packaging. DOPD uses multi-response optimisation based on desirability 

function (Derringer, 1980), and use process targets and response deviations to represent 

a single objective. To achieve the desired products with highest productivity, some 

processing inputs and outcome measures must be assigned weights so as to keep them 

small or large. Both inputs and outputs are transformed from multiple objectives to sole 

objective by transforming: (i) individual performance measures into individual 

desirability (D) function; and (ii) multiple individual D functions into one objective 

function, the overall (global) desirability function (GD). 
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Limited use of DOPD in the development of cassava biopolymer derivatives and 

packaging films has been reported in literature (Tumwesigye et al., 2016b) and, it has 

also been widely reported for development of other materials (Aggarwal, Singh, Kumar, 

& Singh, 2009; Olivato, Grossmann, Bilck, Yamashita, & Oliveira, 2013; Pizarro, 

González-Sáiz, & Pérez-del-Notario, 2006). Unfortunately, there is no information in 

literature showing use of DOPD in MAP designs. Since the package environment is 

influenced by many factors, and only a few have been used in the MAP designs and 

development, it is necessary that DOPD is applied, the models developed thereof 

validated and package performance is done with real conditions. The scale-up of this 

design could help obtain an efficient MAP with wide applications. 

 

Conclusion 

 

The use of cassava in developing and improving biobased packaging materials, 

particularly edible films, has been extensively studied for over a decade.  

The high starch demand and its production using conventional methods is associated 

with environmental wastes.  

Various approaches have been employed for developing biobased materials, with a 

growing trend in the materials structural and functional improvements using 

reinforcements such as fillers, bioactive compounds and chemical modification. 

Although, their superior properties are better than those of starch matrices, they have the 

potential disadvantage of increasing the costs and energy associated with material 

production. The materials are limited to the development stage but fall short of 

evaluations with intended application conditions. Their interaction with in-package 

environment under real conditions is non-existent, and their influence and performance 

is not known. Thus, the exploration of these materials in commercial use, mainly food 

packaging, is challenging. 

Holistic studies, integrating cost-effective, energy-efficient, green processes, using 

standard methodology, optimising conditions and properties and validation with specific 

products and environments, can be a sustainable strategy for increased commercial use, 

primarily food packaging. Understanding the performance of cassava biobased materials 

in target foods and environment is crucial to their accelerated adoption. 
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These findings however reflect a great potential of cassava biobased materials, as 

packages, in wide-range applications.  
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Chapter 2.  New sustainable approach to reduce Cassava borne environmental  

waste and develop biodegradable materials for food packaging applications 

 

Abstract 

 

Transforming waste Cassava into a sustainable resource requires a new approach and 

redesign of the current processing methodologies. Bitter Cassava cultivars have been 

employed mainly as an emergency famine food, but could also be used as a value added 

material for packaging. Processing of intact bitter cassava can minimise waste, and 

produce low-cost added value biopolymer packaging films for targeted applications. 

This study developed an improved simultaneous release, recovery and cyanogenesis 

(SRRC) downstream processing methodology for sustainable reduction of waste and 

development of film packaging material using intact bitter Cassava.  

SRRC approach produced peeled (BP) and intact (BI) bitter Cassava biopolymer 

derivatives. BI showed significantly higher yields ensuring 16% waste decrease with no 

environmental impact caused by discard residues. SRRC was very effective in reducing 

the total cyanogen content to within Codex minimum safety limits, demonstrating that 

the peeling of bitter Cassava process can be avoided. Transparent films were produced 

using the casting method from both BP and BI derivatives. BI films were more 

transparent and homogeneous, less soluble, less permeable to moisture, less hydrophilic, 

more permeable to oxygen and carbon-dioxide, sealable, lower cost, than the BP.  

Hence, intact bitter Cassava and SRRC can be used as sustainable, safe, integrative 

process solution for high value-added product (e.g., packaging film) production from 

low-cost biobased materials. 

 

Key words:  bitter Cassava, downstream processing, film development, waste-

reduction, sustainability 
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2.1 Introduction 

 

The environmental problems caused by food supply chain waste and by-product streams 

have triggered increased demand for research into biobased value added products and 

efficient sustainable renewable resources. Thus far, there is a growing realisation of the 

requirement to increase value products that are made out of secondary raw materials. 

Among these, waste is considered a valuable resource to provide sustainable feedstock 

and concurrently contribute to circular-based approach of energy recovery (Essel & 

Carus, 2014). 

 

Cassava (Manihot esculenta Crantz) crop is considered among the highest generators of 

huge amount of wastes in the form of peel, pulp, wastewater and leaves during 

postharvest processing (FAO, 2013). With increased population, production and 

consumption of Cassava has increased consistently and thus waste disposal in the 

environment has increased tremendously due to a linear and irreversible behavioural 

pattern that follows a produce-consume and dispose model. According to (FAO, 2013), 

starch roots, mainly Cassava contributes over 700 MT wastes in the global upstream 

food wastes, requiring conversion into valuable products and energy in an 

environmentally friendly manner.  

 

Apart from direct food wastes, other sectors such as foods, beverages and consumer 

goods packaging generate more non-eco-friendly plastic wastes and this has resulted 

into huge impact on the environment. With insufficient prioritisation of packaging 

source reduction, recyclability, compostability, recycled content and recycling policies 

(MacKerron & Hoover, 2015), wastes are likely to increase in the years ahead. It is 

estimated that less than 14% of plastic packaging materials are recyclable (MacKerron 

& Hoover, 2015), and as plastic commands the greatest proportion of food packaging 

industry, the need to design biobased material is a priority.  

 

With increased devotion to research into packaging sustainability, it is highly likely that 

non-commercial and non-food plants-derived feedstock will anchor packaging industry. 

Besides, the finite and dwindling natural material sources and competition for food 

supply amidst population growth, justify the need to invest into efficient utilisation of 
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unexploited resources. Thus, addressing waste minimisation and developing packaging 

materials, in tandem, could result into a more competitive resource efficient economy. 

 

An alternative strategy is to use a circular utilisation model whereby Cassava waste 

could be transformed into resource for development of value-added flexible packaging 

materials resulting in waste minimisation due to the biodegradable nature of the 

materials. If used efficiently, Cassava borne environmental wastes have the potential 

commercial viability in better eco-designing of materials for food and non-food 

applications. Semi-commercial crops such as bitter Cassava (BC) have the potential to 

sustain the growth of food plastic packaging industry. Like sweet Cassava, BC-based 

films have potential biodegradability and could form excellent film forming properties. 

However, their demands for processing prior to use due the high total cyanogens (TC) 

(containing 900-2,000 ppm) (Cardoso et al., 2005), has limited their commercial 

potential.  Essentially, when bitter Cassava is used as food, the peels are extensively 

removed resulting in huge contribution to waste generation and even a negative 

environmental impact. Traditionally, processing is achieved by peel removal, generating 

great amounts of waste. Nonetheless, elimination of the peelings does not guarantee its 

safety, reasonable lethal amounts of TC still remain and the roots have to be further 

processed. Traditional soaking and heaping fermentation methods produce high levels 

of unspecified total cyanogens combined in waste waters and peels, and deliberate 

burning of peel wastes contributes to carbon dioxide emission and strong offensive 

smells to the environment (Heuzé et al., 2013). Using bitter Cassava for waste 

minimisation and package development could be done in an efficient manner, which is 

compatible with increased income and improved safety of Cassava dependants and 

reduced environmental impact, while providing a sustainable feedstock for packaging 

applications.  

 

Transforming waste Cassava into a sustainable resource requires a new approach and 

redesign of the current processing methodologies. Simultaneous release, recovery and 

cyanogenesis (SRRC) could be a sustainable approach in processing and has been 

explored and piloted with success to ease downstream extraction of biopolymers from 

whole root Cassava (Tumwesigye et al., 2014). Safe and clear biopolymer derivatives 

have been produced, with success, from the whole root of Cassava for potential food 

and non-food industrial use.  The SRRC processing methodology, utilising semi-
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commercial intact bitter Cassava, could be explored in production of flexible food 

packaging film materials with improved properties. Moreover, for production of low-

cost packages but also by obtaining sustainable feedstock because bitter Cassava has no 

competition with food supply since sweet Cassava has normally been utilised as food 

and non-food materials. Additionally, SRRC is an intrinsic processing methodology 

which re-enforces starch with compounds from the peel and other waste solids, and 

there is no generation of wastes and waste streams. This could reduce the cost of film 

package production and ensure process economy.  

 

The objective of this study was to i) use intact bitter Cassava to reduce waste, ii) apply 

an improved systematic downstream processing approach to improve biopolymer 

derivatives physico-chemical properties, and iii) development of film packaging 

material. If biopolymer derivatives and films produced out of intact bitter Cassava 

presented comparable or better properties than those made from peeled equivalent, then 

it would be possible to eliminate the peeling, and its environmental impact, with 

additional production of flexible packaging material as added value product.  

 

2.2 Methodology  

 

2.2.1 Source material 

 

Decisions to source for a sustainable raw material was based on many factors taking 

into account the renewable resources, no competition with food supply, minimising 

waste and environmental impact, and cost-effective option. Accordingly, bitter Cassava 

(Tongolo) was the preferred material used for package development. 

 

2.2.2 Cassava preparation 

 

Bitter cassava roots (Tongolo) at 12-18 months were picked from farmers’ fields 

(Northern Uganda) according to recommended harvesting practices (CODEX, 2013). 

The roots were separated from soil debris, placed in ice boxes, transported to the 

laboratory and kept at -20°C for further treatment. Fresh bitter cassava was assessed for 

total cyanogen content immediately after harvesting and prior to pulp preparation. The 

cyanide kit A from Australian National University (Canberra) was used for 
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determination of hydrogen cyanide in fresh cassava as described (Meredith G. 

Bradbury, Egan, & Bradbury, 1999). 

 

2.2.3 Waste solid analysis 

 

Bitter Cassava was used intact (I) or peeled (control), washed thoroughly, rinsed 3 times 

with deionised water and kept at -20°C between sample extractions.  

Waste solids quantification was done by randomly selecting 12 intact roots from the 

bulk bitter cassava. The wastes (peel, cambium, phloem, central xylem fibre) were 

carefully removed from the parenchyma, and both peel and peeled root portions were 

separately weighed.  Each measurement was taken from 100g intact roots that were 

correspondingly assigned to 9 different treatments during subsequent tests. The weight 

of the waste solid was calculated by dividing the weight of waste by the weight of intact 

root and expressed as a percentage.  

 

2.2.4 Simultaneous release, recovery and cyanogenesis (SRRC) of biopolymer 

derivatives  

 

The downstream processing procedure is schematically presented in Fig. 2.1. Both 

intact and peeled roots were processed in two-stages, the mechanical tissue rupture and 

the biopolymer release, in order to obtain biopolymer powders. In elucidating the 

function of simultaneous release, recovery and cyanogenesis (SRRC) in downstream 

processing, intact (I) (periderm-free) roots were scrubbed, while in the peeled (P) 

(cortex-free) roots, the peel was manually and carefully detached from the edible 

portion (parenchyma). Intact and peeled bitter cassava roots were fed into an automated 

grating machine and the resulting pulp mass obtained after mechanical tissue rupture 

and cell disruption. The machine was equipped with a feeding hopper, a constant speed 

rotating perforated spiked drum and an inclined delivery channel. This initial action 

serves the dual purpose of activating cyanogens hydrolysis into release of volatile 

hydrogen cyanide and bringing together different polymer components for possible 

modification.  
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Fig. 2.1.  Schematic flow of downstream processing for peeled (P) and intact (I) bitter Cassava 

and derived biopolymer products from peeled (BP) and intact (BI) roots.  

 

Biopolymers’ release and recovery was performed by adding 100 g of pulp mass into 

100 ml of extraction buffers in a commercial blender (500 W Breville IHB086 Hand 

Blender). Full factorial design of 9 different solutions, i.e., 2 extraction buffers at 3 

levels, NaCl (0, 1.5, 3.0 M) and H2SO4 (0, 25, 50 mM) were used. A total of 18 different 
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samples (9 Intact and 9 peeled cassava roots) were then homogenised for 4 min, filtered, 

centrifuged and washed in deionised water (Fig 2.1). The chemicals used in release and 

recovery, i.e., sodium chloride (≥99% AR), conc. sulphuric acid (99.9%), food grade 

sodium bisulphite (ACS 58.5% SO2), and glycerol (99.5%) were analytical grade from 

Sigma Aldrich (Ireland).  

 

The recovery was achieved by drying semi-dehydrated coarse pulp in an air-circulating 

oven at uniform conditions, temperature (50±5°C) and relative humidity (30-40%) until 

constant weights were obtained. The dried samples were milled to a fine powder using 

an Analytical Grinder (IKA Yellowline-R A 10, Germany) and kept refrigerated (4 -

70C) between tests and further use. 

 

Release, recovery and drying of the biopolymer derivatives were performed at NARO-

Kawanda laboratory (Uganda), and samples properly packed in air-tight bags and 

shipped to the labs in Process & Chemical Engineering, School of Engineering, 

University College Cork, Ireland for further experimental analysis.  

 

2.2.4.1 Yield determination 

8.2.1.14   

Yield was defined as the percentage of constant weight dried powder recovered from 

initial mass of 100 g roots, and determined in triplicate for the 18 derivative products, 

totalling 54 samples per analysis. Considering the average moisture content of intact 

cassava root as 60 g per 100g root, then the total dry matter content was 40 g per 100 g. 

 

2.2.4.2 Total cyanogens analysis 

 

The total cyanogens (TC) content were quantified by the cyanide kit from Australian 

National University (Canberra). The quantification entailed grounding samples into 

53µm particle size powders and their total cyanide contents (ppm) measured based on 

the colour chart and spectrophotometric-derived absorbance kit protocol B2 method as 

described by Bradbury et al., (1999).  
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2.2.4.3 Amylose measurement 

 

Amylose contents of biopolymer derivatives and their corresponding proportions were 

determined by the assay kit from Megazyme International, Ireland. The determination 

involved grounding samples into 53µm particle size powders and their amylose contents 

assayed in a 25±0.1 mg sample as described in the kit (Megazyme International Ireland, 

2011).   

 

2.2.5 Film preparation 

 

The films were manufactured using the casting method, either with peeled (BP) or intact 

(BI) bitter Cassava derivatives (3 w/v %) and glycerol (30 w/w %). The solution was 

placed in agitating water bath at 70°C,  heated to 65°C with constant stirring until a 

viscous transparent gel was observed; and held for 20 minutes. Casting was done by 

pouring film-forming solution (30ml) onto a previously lubricant sprayed 14cm 

diameter flat glass plate using a dropper. The film solution was measured to ensure 

production of uniform thickness films (30±5 µm) for different samples, and the dry 

PTFE spray was used to ease peeling of films after drying. The plates were left at 

25±1°C for 3 hours to allow stabilisation and bleeding of trapped bubbles, and then 

dried in a ventilated oven 40±1°C for 4 h. The dried films were peeled off the plates and 

equilibrated (54% RH, 23±2ᴼC, at least 48h) for further use. 

 

2.2.5.1 Optical properties 

 

Film optical properties were assessed using transparency and colour parameters. Film 

transparency was determined with film strips (3 x 2 cm) as described (Mu, Guo, Li, Lin, 

& Li, 2012) with slight changes.  Films strips were carefully inserted into cuvettes and 

placed inside a spectrophotometer cell. Transmission was measured using a 

spectrophotometer (Biochrom Libra S22 UV/Vis) at 700 nm. Three replicates of each 

film were tested. The percent transparency was calculated as described (Mu et al., 

2012). For each value, the lower T implies that more light passed through a film, thus 

described as transparent.  

Colour difference (ΔE) was determined according to Ramirez-Navas & Rodriguez de 

Stouvenel, (2012) using CR-400 Chroma Meter, Konica Minolta Sensing Japan without 
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major changes. Measurements were taken on six different equal positions on a circular 

film piece for 3 samples of BP and BI each, and mean values used in CIELAB L*, a*, 

b* using the Eqn.  2.1 as described (Ghorpade, Hanna, & Weller, 1995; Sharma, Wu, & 

Dalal, 2005).   

ΔE = √ [ (ΔL*)² + (Δa*)² + (Δb*)² ]        2.1 

 

where √, square root symbol; ΔL*, Δa* and Δb* , differences between sample and 

standard (S) colour parameters. S is film background colour parameters.  

 

2.2.5.2 Solubility 

 

Film solubility (FS) in water was measured as described (Belibi et al., 2014) with 

minimal modifications. Previously oven-dried film strips (3 x 2 cm) were weighed on 

an aluminium foil, submerged in a beaker with 50 ml of distilled water and tightly 

covered with parafilm to minimise water loss and airborne contaminants.  The contents 

were kept at 23°C for 24 h, intermittently agitated to allow dissolution, partially 

dehydrated (where necessary filtered) on filter paper and dried in an air-circulating oven 

at 70°C until the sample weight was constant. Total soluble matter of the sample was 

calculated as described (Belibi et al., 2014). Sample tests were performed in triplicate, 

and mean values were used for computing FS in water. 

 

2.2.6 Analysis of film Performance properties 

 

2.2.6.1 Surface  

 

Film surface properties were analysed in terms of its morphology and energy.  

To supplement optical properties and gain better understanding of the film homogeneity 

and microstructure, film was examined using Scanning Electron Microscope (SEM), 

JSM-5510 (Jeol Ltd., Tokyo, Japan). Small film strips were fixed on stubs using double-

sided carbon tape and leaving a space on either side of the strip to allow clear 

observation of film surfaces and cross section. Prior to capturing SEM images, stub-

fixed strips were coated with a thin layer of gold. The films were subjected to a focus 

magnifications as high as 20 000x and images capture between 200x and 30 000x 

magnification and intensity of 5 kV. 



Chapter 2. Sustainable approach to reduce Cassava waste & develop biobased materials 

52 
 
 

 

Gaining insight of surface energy properties (surface hydrophobicity, hydrophilicity and 

wettability) was through measurement of contact angle (CA) using the sessile drop (SD) 

method by Optical tensiometer (Theta, BiolinScientific Finland) at 20⁰C. SD determines 

the contact angle between drop baseline and drop boundary tangent. The Theta was 

equipped with a liquid dispenser holder fitted with a 0.5 mm diameter precision 

microsyringe steel needle, and OneAttension software for drop shape analysis and live 

measurements. A rectangular film strip (2 cm x 2 cm) was mounted on a pre-cleaned 

glass slide covered with double-sided tape, then placed on a horizontal holder at 90⁰C to 

enable clear observation of film surface and cross-section. The syringe was positioned 

vertically 10 mm from the film surface and 2 µL deionised water drop automatically 

dispensed (1.0 µLs-1) on the film. The measurements lasted 180s and data was analysed 

for contact angle (ɵ). All films were conditioned (23±2⁰C, 50 %RH, 48h) prior to 

measurements and five measurements were carried out. Drop wetting, spreading and 

beading/shrinking away gives CA of 0, 0-90⁰and > 90⁰ respectively. 

 

2.2.6.2 Chemical 

 

Film chemical properties were analysed using Fourier transform infrared spectroscopy 

(FTIR). The films were prepared into thin round discs while under the lamp heater and 

mounted directly on the sample holder. The spectra were recorded with an UV/Vis 

spectrum one FTIR spectrometer (Perkin Elmer Lambda 35, USA), frequency range of 

4000–400 cm-1 and 4cm-1 resolution in the transmittance and absorbance modes for 

individual spectrum with 30 scans at room temperature.  

 

2.2.6.3  Barrier 

 

Film barrier properties were assessed by determining its water vapour transmission rate 

(WVTR) as well as oxygen transmission rate (OTR) and carbon dioxide transmission 

rate (CTR). WVTR was determined gravimetrically according to (ASTM, 2005), 

whereas OTR and CTR were determined using a method described by Abdellatief et al., 

(2015) with deviations from steady state to dynamic oxygen accumulation procedure. 

Films for WVTR, OTR and CTR were formulated and cast on 8.4 cm and 14.0 cm 

diameter dishes to maximize uniformity and permeation cell fitting specificity. For 



Chapter 2. Sustainable approach to reduce Cassava waste & develop biobased materials 

53 
 
 

 

WVTR, each previously conditioned (54 %RH, 23±2⁰C, at least 48h) film was carefully 

positioned between acrylic permeation cells containing CaCl₂ (0 %RH) and enclosed in 

a humidity-controlled plastic containers partially filled with 1000 ml of salts solution, 

corresponding to relative humidity of 95 %. The containers were put in temperature 

controlled incubators at 38°C, and changes in weight of the cell were recorded every 2 

hours for 10 hours and data obtained was used for WVTR calculation. This was 

intended to elucidate the differential flux gradient as a deviation from the normally 

applied conditions (38⁰C, 90 %RH), and also have results comparable to previous 

research on films. Similar procedure for film preparation was followed for OTR and 

CTR, but changes to the method by (Abdellatief et al., 2015) were made in terms of i) 

flushing (0% O2, 20 % CO2 and 80% N2) and measurement (23⁰C, 50% RH) conditions, 

using a PBI Dansensor (CheckMate 9900, USA). It was assumed that O2 / CO2
 / N2 

concentration gradient was maintained across the film throughout experimental period. 

All tests were conducted in triplicate and mean values were used for calculating WVTR, 

OTR and CTR, expressed as g/(m2.day) and cm3/(m2.day), respectively. 

 

2.2.6.4 Mechanical 

 

Mechanical  properties, i.e. tensile strength (TS), elongation at break (E) and elastic 

Modulus (EM) were tested using TA HD Plus Texture Analyzer (Stable Microsystems, 

UK), fitted with a 50 kg load cell, according to (ASTM, 2009). Ten previously 

conditioned (23±2⁰C, 54 % RH, at least 48 h) films were cut into 25 x 100 mm strips 

and their thickness measured with an absolute digital Caliper (Digmatic, Mitutoyo UK 

Ltd) prior to the tests. Measurements were taken for all the strips and at least 5 close 

values were used in estimating the cross-sectional area (thickness x initial grip 

distance). The initial grip separation (50 mm) and cross head speed (1 mm/s) were used. 

TS (MPa) was calculated by ratio of the force necessary to break a sample to the cross-

sectional area, E (%) as a change in the sample original length between grips at break, 

and EM (MPa) by ratio of TS to the extensional strain. All 10 strips were tested and at 

least 5 with closest values were used in calculations of TS, E and EM. 

 

2.2.6.5 Seal integrity 
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Seal integrity (SI) is used as an indicator of seal quality (F. ASTM, 2016) The film SI 

was determined by measuring its seal strength (ST). A manual impulse sealer, UK with 

adjustable temperature control was used for optimal seal quality. Two film strips (100 x 

150 mm) were placed on top of each other between two pads for dwell time of 1 second. 

The sealed strips were removed from the sealer and cooled at ambient temperature 

(23±2⁰C) for 10 minutes to allow stabilisation. The ST was determined using a TA HD 

Plus Texture Analyzer (Stable Microsystems, UK), fitted with a 50 kg load cell. The 

film non-heat sealed end was held perpendicular to the direction of the pull, with the 

distance between the clamps of 20 mm and a test speed of 1.0 mm/min. The maximum 

force breaking the seal and causing seal failure was recorded as the seal strength in 

Gram-force/ millimetre (g (f)/25mm). Ten pair film strips measured and the means of at 

least 5 strips were used in computing seal strength. 

 

2.2.6.6 Thermal 

 

Thermal testing, glass transition (Tg) and melting (Tm) temperatures, heat of fusion 

(ΔH) and crystallinity (C), was conducted using a differential scanning calorimeter 

(DSC 200 F3) equipped with a thermal analysis data station. A previously conditioned 

(54 %RH, 23±2°C, at least 48 h) hermetically sealed DSC pan with film, together with a 

reference empty pan were heated from 20 to 220°C at a rate of 10°C/min, cooled back 

rapidly to below its glass transitional temperature (25°C) and reheated at a rate of 

5°C/min to 220°C to give them thermal history. Tg, Tm, ΔH and C were calculated using 

the built in software and determined by considering the heat capacity change observed 

on the second heating.  

Thermogravimetric analysis was carried out to establish thermal stability of films using 

TG Analyser (Spectrum 500) and analysed by the Universal Analysis 2000, New Castle 

USA) between 25⁰C and 300⁰C, heating rate of 10⁰C/min. Prior to analysis, each 

sample was corrected against a background scan. 

All samples were evaluated in triplicate and mean measurements reported.  

 

2.2.7 Statistical analysis 

 

A factorial analysis of variance (ANOVA) was performed, pooling the 3rd level 

interaction with the error and testing all main effects and 2-way interactions for 
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significance at a 95 % confidence level. The main effects were further decomposed in a 

linear and a quadratic component, drawing P and R² to analyse statistical significance at 

a 95 % confidence level. Statistica 7.1 software (StatSoft Inc., Tulsa, USA) was used. 

Colour was recorded in the CIE L*a*b* system and analysed using Microsoft Excel, 

version 2010.   

 

2.3 Results and Discussion 

 

2.3.1 Waste solids 

 

Intact bitter cassava produced an average 16 % waste decrease, due to incorporation of 

the waste solids, and no environmental impact caused by discard residues. It is clearly 

shown that the use of intact roots reduces the waste yield when compared to the peeled 

roots. Thus, it’s possible to avoid 160 kg waste peel per 1 ton bitter cassava processed 

when the SRRC process is deployed by small-to-medium enterprises to develop added 

value products such as biobased films. It has been shown that a 100 ton cassava starch 

production unit releases up to 47 tons fresh waste and can have a huge impact on the 

environment (Aro, Aletor, Tewe, & Agbede, 2010; Heuzé et al., 2013). Moreover, it is 

well established that cassava processing wastes produces strong offensive smell and 

their decomposing or incinerated disposal heaps immensely emit carbon dioxide (Aro et 

al., 2010; Heuzé et al., 2013). Taken together, these findings and the current study 

suggest that incorporating waste solids through use of intact bitter Cassava can be a 

sustainable waste reduction process that involves cutting down costs of waste treatment 

and legislation. 

 

2.3.2 Effect of SRRC on biopolymer derivative products  

 

The biopolymer derivative powders were evaluated in terms of total cyanogen and 

amylose contents. The Analysis of Variance of 6 responses are summarised in Table 

2.1, showing the portion of the effect estimates explained by each factor and 2-way 

interaction, as well as the p-values. Statistically significant effects are denoted by bold 

typeface, whereas the highly significant ones are denoted with an asterisk mark. For 

each response the effects are shown by a value, irrespective of its sign (positive or 

negative), to facilitate the analysis of which is more influential in the response.  
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Table 2.1. Analysis of the influence of peeling and extraction conditions on biopolymer derivative and film properties. Statistically 

significant effects are denoted in bold and shown by a higher value regardless of direction (positive or negative).  Asterisk shows 

highly significant effect.  
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2.3.3 Biopolymer powder yields 

 

Sodium chloride (NaCl) showed the most statistically significant (p<0.05) effect on 

yield (Table 2.1). NaCl had a statistically significant linear (L) and quadratic (Q) effect 

(Table 2.1), with higher yields the greater its content (Fig. 2.2). Peeling also showed a 

statistically significant (p<0.05) linear effect (Table 2.1), and the yields of intact (BI) 

bitter Cassava (Fig. 2.2 a1) were significantly higher than for the peeled (BP) (Fig. 2.2 

a2). This difference could be attributed to a differential water holding capacity (WHC) 

of intact versus peeled material, with the former having lower WHC probably due to 

their reduced hydration capacity (Sannino, Demitri, & Madaghiele, 2009) and strong 

chemical bonds. Furthermore, the increased BI yield was due to incorporation of the 

waste solids. Therefore, it can be concluded that using an optimised SRRC will be more 

relevant to increase the yields when using intact bitter Cassava. 

 
Fig. 2.2.  Yield of BP (a1) and BI (a2), total cyanogens of BP (b1) and BI (b2) and amylose content 

of BP (c1) and BI (c2) bitter Cassava biopolymer derivatives as affected by extraction 

conditions (NaCl, H₂SO₄).  
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When the yield was determined in terms of the proportion of the maximum yield (%) 

(Table 2.2), intact bitter cassava produced higher yield (60.8 – 77.6 % wt dry basis) than 

peeled cassava (60.7 – 72.9 % wt dry basis). This was also ionic buffer concentration-

dependent 

 

Table.  Yield of peeled and intact cassava as influenced by ionic buffers, and 
determined from maximum  

 
NaCl, M H2SO4 , mM Peeled root (% of 

maximum yield) 
Intact root (% of 
maximum yield) 

0 0 60.7 60.8 
0 25 59.7 62.7 
0 50 61.6 63.3 

1.5 0 63.4 66.1 
1.5 25 63.1 64.8 
1.5 50 64.5 66.7 
3.0 0 72.4 74.3 
3.0 25 70.4 77.0 
3.0 50 72.9 77.6 

 

2.3.4 Total cyanogen content 

 

The total cyanogen (TC) content was significantly (p <0.05) reduced in all samples 

(Peeled, 1.1 – 4.8 ppm and Intact, 0.4 – 2.5 ppm) compared to TC content in fresh roots 

(400-900 ppm) or in defectively processed bitter cultivars (50-135 ppm). The Codex 

standards recommend 0.02 ppm TC per kg body weight in the daily diets of individuals, 

which is equivalent to less than 10 ppm in cassava product (CODEX, 2013).  

The SRRC process had a greater degradation influence on TC; sodium chloride (NaCl), 

sulphuric acid (H2SO4) and peeling and their interaction showed highly significant                 

(p <0.05) effects on total cyanogen loss (Table 2.1). NaCl had linear and quadratic 

reduction effects on TC (Table 2.1). Peeling also showed a significant linear effect on 

TC, both individually and combined with the linear and quadratic NaCl effect (Table 

2.1). H2SO4 showed significant quadratic effect on TC, and combined linear effect with 

NaCl and combined effect with peeling (Table 2.1); these effects were less pronounced 

for the intact (BP) (Fig. 2.2b1) than for the peeled (BI) (Fig. 2.2b2) bitter Cassava. 
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SRRC processing was very effective in reducing the total cyanogen content well below 

the Codex minimum safety standard in all cassava samples, in comparison to fresh bitter 

cassava, demonstrating that there is no need for peeling bitter cassava.  

SRRC processing was very effective in reducing the total cyanogen content well below 

the Codex minimum safety standard in all cassava samples, in comparison to fresh bitter 

cassava, demonstrating that there is no need for peeling bitter cassava.  

 

2.3.5 Amylose content 

 

Intact bitter Cassava showed lower amylose content (18 – 24 %) than peeled (31.4 – 39 

%). The peeling showed the strongest significant (p<0.05) effect on the amylose content 

(Table 2.1). NaCl showed a significant effect individually and combined with peeling 

(Table 2.1). Peeled bitter Cassava showed slightly higher amylose content (Fig. 2.2c1) 

than previously reported for sweet Cassava varieties (~15-30 % amylose content) 

(Alves, Mali, Beléia, & Grossmann, 2007; Nuwamanya, Baguma, Wembabazi, & 

Rubaihayo, 2013; A. C. Souza et al., 2012), whereas, amylose content (%) for intact 

bitter Cassava were within this range (Fig. 2.2c2). The amylose content (%) reduction in 

intact bitter Cassava biopolymers could be explained due to the enzymatic hydrolysis 

during the SRRC process because of the presence of the waste solids. The lower 

amylose content (%) of the biopolymers produced with the intact roots can explain the 

more noticeable transparency of these types of films (see Fig. 2.3). 

 

2.3.6 Film prototypes 

 

The biopolymer packaging film prototypes from peeled (BP) and intact (BI) bitter 

Cassava powders are shown in Fig. 2.3. Eighteen formulations produced transparent and 

flexible films and further characterisation was performed in terms of Optical, solubility, 

barrier, mechanical, and thermal properties. 
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Fig. 2.3. Film visual images: Transparency of peeled (BP-A) and intact (BI-B) bitter Cassava 

films as affected by peeling and extraction conditions (NaCl, H₂SO₄) I, as potential 

printable material (II) and bag manufacturing capability (III). 

 

2.3.6.4 Optical properties  

 

Both peeled (BP) and intact (BI) bitter cassava films were transparent (Fig. 2.3). The BI 

films showed lower values of transparency (3.64 %) when compared to BP (11.94 %) 

equivalent, indicating that BI films were more transparent (lower Transparency %) than 

BP equivalents. When subjected to the same experimental testing methods and 

conditions, the BI Transparency % was found to be comparable to the commercial NVS 

(4.55 %) and PLA (3.39 %) but much more lower than OPP (13.55 %) films. Therefore, 

BI films were more transparent than OPP and with comparable transparency to other 

biobased films. 

Analysis of the effect of peeling and extraction conditions (NaCl, H₂SO₄) on 

transparency is presented in Table 2.1 and Fig. 2.4 a1 , 4a2, showing that peeling had a 

significant (p<0.05) effect on transparency. H₂SO₄ also showed a significant effect 

individually and combined with peeling (Table 2.1). The implication of this result is that 

more transparent films can be produced at low cost from intact bitter Cassava by 

applying an intrinsic modification during the SRRC process. 
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Fig. 2.4.  Transparency of BP (a1) and BI (a2), Colour of BP (b1) and BI (b2) and solubility of BP 

(c1) and BI (c2) bitter Cassava biopolymer derivatives as affected by extraction 

conditions (NaCl, H₂SO₄).  
 

To further corroborate the transparency results, film colour was determined and the 

analysis for the colour difference (ΔEa*b*) is shown in Table 2.1 while for their degree 

of lightness (L*) is presented in Fig. 4b. Unlike transparency, peeling and NaCl showed 

a higher significant (p<0.05) impact on film colour, thus confirming that BI (Fig 2.4b2) 

films were more transparent than those of BP (Fig. 2.4b1). The higher BI L* value is a 

manifest of better visual characters (minimum haze) of these films when compared to 

BP.  
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2.3.6.5 Solubility of bitter Cassava films 

 

Water solubility, as a function of processing conditions (buffer and root type) is shown 

in Table 2.1 and Fig. 2.4c1, 2.4c2. Generally, films from the peeled (BP) bitter Cassava 

were more soluble compared to the intact (BI) equivalent as shown by a higher 

significant (p<0.05) effect of peeling on solubility (Table 2.1). This could be due to 

adding the waste solids that resulted in slightly higher water-resistant films. An increase 

in NaCl concentration increased film solubility in all treatment categories. Moreover, 

highly significant (p<0.05) effect was observed in BP films when NaCl was increased. 

Although the effect H₂SO₄ was not significant, as the H₂SO₄ concentrations increased, 

the BP and BI films were difficult to recover, maybe due to fast acidic cellulose 

depolymerisation forming hydrophilic oligomers that were easily lost in water. 

Nonetheless, the aforementioned solubility effect in the BI films could not match the 

higher effect in the BP categories, possibly due to water-resistance advantage induced in 

the film by the waste solids in BI films. The lower BI film solubility, at higher buffer 

concentrations (NaCl-3M: H₂SO₄-50mM), could be due to amorphised cellulose 

structure caused by enhanced high enzymatic digestibility at high acid concentrations 

(Ioelovich, 2012) leading to higher solvent mobility. Therefore, BP films produced with 

higher buffer concentrations (NaCl-3M: H₂SO₄-50 mM) cannot be used in their current 

form in an environment where a high water resistance is required, and would need 

further enhancement to reduce their solubility. In summary less soluble films can be 

produced with intact bitter (BI) Cassava, whereas BP films cannot be used on high 

humidity systems. 

 

Knowledge of film properties is important in assessing package performance. Therefore 

assessment of BI films in comparison to commercial (OPP, PLA and NVS) films was 

done and is shown in Table 2.2, in terms of their barrier, mechanical and thermal 

properties.   
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2.3.7 Film performance properties 

 

2.3.7.1  Surface 

 

The scanning electron micrograph (SEM) of surface and cross-section is presented in 

Fig. 2.1. The film surface homogeneity is evident in Fig. 2.5a., suggesting that there was 

complete solubility of biopolymer derivatives in the polymer matrix but also this could 

have been a result of limited solvent migration at the interface. This result is also 

supported by the cross-section micrograph (Fig. 5b), suggesting a strong and uniform 

adhesion of material additives leading to homogenous mesh network structures in the 

film. Additionally, the result could explain the flexibility which was conspicuously 

evident in the films. 

 
Fig. 2.5.  Scanning electron micrographs of intact bitter Cassava film surface (a) and cross 

section (b) morphology.   

 

Knowledge of surface energy is important in determining the printability and adhesion 

of flexible films.  Intact bitter (BI) Cassava films presented contact angles (CA) of 72.7 

– 87.6⁰ between 0 and 180 seconds, suggesting the presence of polar functional groups 

in the film structure leading to less hydrophobicity. The polar functional groups were 

confirmed by FTIR analysis. Despite the low film hydrophobicity but less 
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hydrophilicity tendencies, films exhibited some degree of printability (Fig. 2.3).  The BI 

Cassava films presented the CA within the range of sweet Cassava, 73.5-85.2⁰ (de 

Moraes et al., 2013), PLA, 73.4-81.0⁰ (Navarro et al., 2008) but lower than OPP, 111.0⁰ 
(Gourianova, Willenbacher, & Kutschera, 2005). 

 

2.3.7.2 Chemical  

 

The infrared (IR) spectra peak analysis of intact bitter Cassava films is shown in Fig. 

2.7. It can be seen that there is peak absence at the 4000-3600 cm-1 position, indicating 

that there were no N-H stretching vibrations of amines or amides. The result meant that 

the film contained insignificant protein and total cyanogen contents. This is consistent 

with 0.4 -2.5 ppm total cyanogens of the powder derivative used in film formulation. 

The 3700-3000 cm-1 broad spectrum peak due to O-H stretching vibrations 

(Hinterstoisser & Salmén, 2000), the aromatic C-C peaks at 1600-1500 cm-1 could be an 

indication of cellulose, hemicellulose, pectin and lignin (Liang & Marchessault, 1959) 

in addition to starch incorporation in the film by solid wastes. This result agrees with 

the Cassava waste chemical composition obtained in earlier studies (Babayemi, Ifut, 

Inyang, & Isaac, 2010).  

 

 
Fig. 2.6.  FTIR spectra of intact bitter Cassava films prepared with derivative powder (3 w/v %) and 

glycerol (30 w/w %). 

 



Chapter 2. Sustainable approach to reduce Cassava waste & develop biobased materials 

66 
 
 

 

2.3.7.3 Barrier 

 

Intact bitter (BI) Cassava films, produced from powders with NaCl: H2SO4, 1.5M: 

25mM and Cassava: Glycerol: drying temperature, 3 w/v%: 30 w/w %: 500C 

conditions, exhibited different barrier behaviour in moisture and gas environments 

(Table 2.3). The permeability of BI Cassava films was within the range of commercial 

polylactic (PLA), Natureflex (NVS) and sweet Cassava, and less than that of 

commercial oriented polypropylene (OPP). Similarly, the BI oxygen transmission rate 

(OTR) was comparable to commercial PLA but higher than NVS and lower than OPP 

(Table 2.3). Conversely, the BI carbon-dioxide transmission rate (CTR) was reasonably 

lower than PLA, suggesting that the BI structure provided less solubility to carbon-

dioxide than that of PLA. Comparably, bitter cassava produced films with lower OTR 

than commercially available OPP. These results could be an indication of highly 

amylopectin amorphous network structure of BI imparting less oxygen transfer in the 

films when compared to OPP and sweet Cassava.  Regardless of CO2 importance in 

modified atmosphere packaging, the noteworthy feature is that the CTR data on the 

Cassava films and its relations to the barrier properties is conspicuously lacking in 

literature. 

 

2.3.7.4 Mechanical properties 

 

Intact bitter (BI) Cassava film tensile strength (TS), elongation at break (E) and elastic 

modulus (EM) are shown in Table 2.3. As can be seen, TS of BI is comparable to 

commercial PLA, slightly lower than commercial NVS and OPP but higher than sweet 

Cassava. To gain further insight, the E and EM of BI were compared with PLA, NVS 

and OPP. It was found that BI films yielded lower E than for NVS, OPP and sweet 

Cassava but higher than the E of PLA. Conversely, the EM of BI was lower than that of 

PLA and NVS but higher than the EM of OPP and sweet Cassava.  

Thus, it can be concluded that the comparative nature of BI films with commercial films 

could suggest that they have potential commercial application. 
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2.3.7.5 Seal integrity 

 

Intact bitter (BI) Cassava films presented comparable seal strength with commercial 

Natureflex, NVS but lower strengths than PLA and OPP (Table 2.3).  The BI films 

exhibited lasting seal strengths when left exposed to ambient conditions (15-20⁰C; 50-

60 %RH) for 12 hours beyond which the seals showed a gradual separation. However, 

in all the replicates tested, there was no evidence of instant separation, suggesting that 

they were less brittle and the film surfaces adhered adequately. The gradual loss of 

strength suggests that the films could be applied in moderately high temperatures and 

low humidity to form the internal lining of food bags. 

 

2.3.7.6 Thermal  

 

Like barrier and mechanical properties, glass transition (Tg) temperature, melting (Tm) 

temperatures, heat of fusion (ΔH) and crystallinity (C) of intact bitter (BI) Cassava were 

compared to commercial films. BI Cassava produced films with slightly lower Tg 

(54.3°C) than commercially available polylactic acid (PLA) (60.0°C), and comparable 

Tm (210.0°C) to PLA (170-230°C) (Curtzwiler et al., 2008). The BI film ΔH (67.0 J/g) 

was in a similar range with LLDPE (61.97 J/g), but higher than PLA (23.4 J/g), 

whereas, the C of BI (55.7%) exhibited higher values than those of PLA (12.9 %) and 

LLDPE (45.2 %) (Salamone, 1996). The comparable Tg and higher C could be due to 

the influence of SRCC on BI films, turning them into semi-crystalline state and falling 

into other semi-crystalline polymer category e.g. linear polyethylene, PE (Ehrenstein, 

2001). Conversely, the higher Tm could be due to higher structural regularity of films 

imparted by incorporation of the waste solids. These findings suggest that intact bitter 

Cassava films can withstand thermal conditions similar to the other commercial films. 
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Table 2.3.  Comparison of barrier and mechanical properties of intact bitter Cassava (BI), commercial (PLA, NVS, OPP) and sweet 

cassava films. 
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Fig. 2.7.  Thermogravimetric analysis of intact bitter Cassava films prepared with derivative     

powder (3 w/v %) and glycerol (30 w/w %). 

 

Thermogravimetric analysis (TGA) of intact bitter (BI) Cassava films is shown in Fig. 

2.7. As shown at point X, the film weight loss of slightly less than 10% over 180⁰C was 

due to bound water. This behaviour is similar to the one observed for most polymer 

networks (Gonsior, Mohr, & Ritter, 2012), although the loss is not much pronounced as 

shown by the linearity in the graph (Fig. 2.7).  The uniform decomposition in film 

structure (region XY) could be attributed to other volatile compounds in film 

contributed by inclusion of the waste solids. However, BI Cassava films showed high 

thermal stability up to Z, corresponding to 373.06⁰C, the onset of total degradation 

(OTD). Although BI Cassava film total weight loss (84.52 %) is slightly higher than 

values found for other polymers (>30%), the thermal stability loss to OTD point 

(373.06⁰C) of BI Cassava films is higher than previously reported range (340-360⁰C) 

for most polymer networks (Gonsior et al., 2012). 
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Conclusion 
 

Intact bitter Cassava showed significantly (p<0.05) higher yields than peeled equivalent, 

and increasing with an increase on both extraction buffers. Intact bitter cassava 

produced an average 16 % waste decrease, showing higher yield due to incorporation of 

the waste solids, and no environmental impact caused by discard residues. The amylose 

content was significantly (p<0.05) lower for the intact bitter cassava than for the peeled 

equivalent. Simultaneous release recovery cyanogenesis (SRRC) processing of bitter 

Cassava was very effective in reducing the total cyanogen content well below the 

Codex minimum safety standard level in all cassava samples, in comparison to fresh 

bitter cassava. This outcome demonstrates that there is no need for peeling bitter 

cassava, and presents promising results for its application to food and non-food 

applications.  

The films were produced using either peeled (BP) or intact (BI) bitter Cassava. BI films 

showed to be more transparent, homogeneous, exhibited lower solubility and 

hydrophilicity, higher WVTR, moderately OTR and CTR, with higher strength (higher 

TS, and EM) and thermal stability (higher Tm, sealable) than BP and commercial PLA, 

but with lower strength than NVS and OPP. The study showed that BI films can be 

produced at lower cost than the peeled (BP) equivalents.  

Therefore, safe, high value-added biopolymers, with potential application for food 

packaging can be produced from intact bitter cassava, minimising waste and 

environmental impact, generating practical applicability and contributing to a 

sustainable system. Furthermore, it is noteworthy that although the goal of this study 

was a proof of concept to develop film prototypes from intact bitter cassava, the film 

production could be potentially scale up using tape casting as reported by ( de Moraes et 

al., 2013).   
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Chapter 3. Integrated process standardisation as zero-based approach to bitter 

cassava waste elimination and widely-applicable industrial 

biomaterial derivatives 

 

Abstract 

 

An integrated standardised methodology for production of biopolymer derivatives 

(BPD) from novel intact bitter cassava was demonstrated by desirability optimisation of 

the simultaneous release, recovery and cyanogenesis (SRRC) process. BPD were 

evaluated for yield and colour by using buffer, 0, 2, 4 % v/v, cassava waste solids, 15, 

23, 30 % w/w, and extraction time, 4, 7, 10 minutes. Using an Integrated process 

methodology, nearly all the intact root was transformed into BPD, resulting in higher 

yield, 41 % w.b. and colour difference, 1.3 in contrast to 26 % w.b. yield and 28 colour 

difference when cassava starch was extrinsically processed.  Maximum global 

desirability, 1.0 predicted efficient material balance, buffer, 4.0 % w/v, cassava waste 

solids, 23 % w/w   and extraction time, 10 minutes, for producing BPD with yield, 38.8 

% w.b. Experimental validation, with buffer, 3.3 % w/v, cassava waste solids, 30 %  

w/w  and extraction time, 10 minutes, produced BPD with 40.7 % w.b. yield. SEM, 

DSC, TGA, FTIR and moisture barrier analyses revealed a uniform microstructure and 

high thermal stability of BPD and film, thus demonstrating efficient performance of the 

standardised integrated methodology. 

Hence, processing intact cassava root as a standardised integrated simple methodology, 

could be used to produce sustainable low cost BPD for a broad range of applications.  

Methodologies designed around standard integrated procedures, matching zero-based 

approach to contamination elimination, are novel strategies, and if they are used 

effectively and widely can provide better avenues to eliminate cassava wastes and 

recover BPD resources as sustainable biomaterials. 

 

 

Key words: bitter cassava, optimization, desirability, standardization, biopolymer 

derivative 
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3.1 Introduction 

 

Environment-borne cassava wastes represent a potential economic source of biopolymer 

derivative cellulose, hemicellulose, pectin, lignin and starch (Babayemi et al., 2010; 

Hermiati, Mangunwidjaja, Sunarti, Suparno, & Prasetya, 2012). Cassava waste solids 

could support the sustainable production of low-cost industrial bioproducts such as food 

and non-food added value products.  The global turnaround concept of regarding waste 

as a worthless material to the idea of a high demand secondary material resource has 

widened value-added waste research. Currently, research emphasis is focused more on 

waste minimisation than waste recycling (Ezejiofor, Enebaku, & Ogueke, 2014).  

Among the cassava varieties, bitter cassava contributes a greater amount of disposed 

environmental waste, >16 % (Tumwesigye et al., 2016) as compared to sweet cassava, 

0.5 % (Edama, Sulaiman, & Abd.Rahim, 2014). Unfortunately, bitter cassava (BC) 

waste minimisation, has not yet received much attention, therefore the environmental 

accumulation of BC wastes has been inevitable. Traditionally, there have been 

initiatives to transform BC into food and other low-value products such as fermented 

crude ethanol and flour (Tumwesigye, 2014), gari (Akinpelu, A.O. L. E.F. Amamgbo, 

A.O. Olojede, 2011). However, total cyanogens, inherent in these varieties and poor 

processing methodologies have impeded the efforts with negative environment impacts. 

Meanwhile, sweet cassava starch production, using reinforcements and modifications of 

biopolymer derivatives (SC-BPD) for various applications have also been studied 

(Raabe et al., 2015; Versino et al., 2015). Although, such procedures require high 

energy leading to higher production costs. Moreover, starch processing using added 

cellulose materials, have been limited by non-uniformity and less compatibility (Azwa, 

Yousif, Manalo, & Karunasena, 2013; Oliveira et al., 2015), requiring further additional 

chemical and physical modifications and costs. Recently, a novel methodology, using 

simultaneous release, recovery and cyanogenesis (SRRC), to transform intact BC 

wastes into safe (total cyanogens, <1.0 ppm) BPD with significant high yields, has been 

reported (Tumwesigye et al., 2016). Due to these findings, SRRC methodology could be 

successfully employed to produce safe intact BC-BPD.  

Standardising methods of producing materials could ease the choice and cost of 

formulations, by defining the design space, processing parameters and material 
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functional properties, which could lead to the engineering design of tailored food and 

non-food added value products. Design of experiments (DOE) has been successful in 

simultaneous investigation of the effect of multiple variables, to determine the most 

efficient and economic matrix formulations needed for optimal formulations (Steele et 

al., 2012). Robust production processes provide methodologies for balancing desired 

material properties with processing parameters with marginal costs and maximum 

functionality. Desirability function approach is extensively employed in the 

optimization of multiple response processes, in which the operating parameters provide 

the "most desirable" responses. In order to broaden ways of modifying native 

polysaccharides and produce new materials for the utilisation of cassava in food 

packaging and other potential industries, customised methods that ensure combined 

release of BPD are necessary.  

To the best of our knowledge SRRC, integrated process, optimisation of BC-BPD 

production, to minimise production costs, and standardisation of design methodology 

have not been studied. Thus, it was justifiable to develop a standardised integrated 

sustainable low-cost methodology to produce BPD from novel intact BC root.  

The purpose of this study was to develop an integrated standardised process 

methodology for novel intact BC-BPD recovery, and evaluate its impact on BPD. The 

optimum processing parameters necessary to obtain maximum yield and colour as 

defined by maximum global desirability, and development of a standardised 

methodology by validation of optimal BPD were investigated. The potential of applying 

BC-BPD as food and non-food material was determined by assessing the effect of 

standardised methodology on BPD’s quality (physical, chemical and safety), and film 

moisture barrier characteristics.   
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3.2 Materials and methods 

 

3.2.1 Integrated process methodology for production of novel intact BC-BPD  

 

3.2.1.1 Intact bitter cassava preparation 

 

Bitter cassava, Tongolo, procured from farmers’ fields, Northern Uganda was separated 

from soil debris, placed in ice boxes, transported to the laboratory and kept at -20°C for 

further use.    

8.2.1.15 3.2.1.2 Integrated process methodology 

 

Production of biopolymer derivatives followed the procedure developed earlier for 

peeled and intact roots via the simultaneous release, recovery and cyanogenesis (SRRC) 

process (Tumwesigye et al., 2016) with slight modifications. Mechanical tissue rupture 

and cell disruption of intact bitter cassava (BC) roots were performed using motorised 

method in a high-speed grating pulper (6,000 g).   

SRRC was found to be crucial in the biopolymer derivatives (BPD) production as the 

process release stage and processing parameters influenced positively the yield and 

properties of BPD (Tumwesigye et al., 2016).  Effects of various parameters at three 

levels, buffer, 0, 2, 4 % v/v, cassava waste solids, 15, 23, 30 % w/w, and extraction 

time, 4, 7, 10 minutes on biopolymers yield and colour were evaluated using a pre- 

designed experiment (subsection 2.3.1). During biopolymers’ release stage, 100 g of 

pulp mass was mixed with 100 ml of various extraction buffers in a commercial blender 

(500 W Breville IHB086 Hand Blender), and the mixtures homogenised according to 

set time (Table 3.1) at ambient temperature (20 - 23ºC). The buffers used in release and 

recovery, i.e., sodium chloride (≥99 % AR) and conc. sulphuric acid (99.9 %) were 

analytical grade from Sigma Aldrich (Ireland).  

Recovery was achieved by centrifuging the slurry at 8,000g, 5-7⁰C for 10 minutes, 

washing in deionised water (3x) and drying semi-dehydrated coarse pulp in an air-

circulating, temperature (30±5°C), relative humidity (30-40 % RH), and constant 

weights obtained after 9h. The dried samples were weighed, colour measured and 

milled to a fine powder using an analytical grinder (IKA Yellowline-RA 10, Germany) 

and kept refrigerated (4 -70C) between tests and further use.  
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3.2.2 Optimisation via desirability approach and statistical analysis  

 

3.2.2.1 Factorial and Box-Behnken response surface experimental design 

 

The BPD production was performed using a factorial and Box-Behnken response 

surface experimental design methodology. The individual factors and levels chosen for 

Box-Behnken design are shown in Table 3.1.    

 

Table 3.1. Box-Behnken design matrix: Actual/coded variables of processing 

parameters and biopolymer derivatives (BPD) yield and colour. 

 

Runs  Actual/ coded independent variables  Thermoplastic derivatives 

  Buffer 

concentration, 

w/v %* 

Cassava waste 

solids, w/w %* 

Extraction 

time, Min. 

 Yield, % Colour change, 

ΔE 

1  0.0 (-1) 23.0 (0) 4.0 (-1)  28.0±0.1 a 6.3±0.1 a 

2  2.0 (0) 23.0 (0) 7.0 (0)  32.9±0.2 b 4.3±0.0 b 

3  4.0  (1) 30.0 (1) 7.0 (0)  38.0±0.3 c 5.6±0.1 c 

4  2.0  (0) 15.0 (-1) 10.0 (1)  27.9±0.3 a 4.8±0.0 d,b 

5  4.0 (1) 23.0 (0) 4.0 (-1)  27.9±0.4 a 5.8±0.0 a,c,e,g,l 

6  2.0 (0) 23.0 (0) 7.0  (0)  26.7±0.5 a 5.5±0.0 e,c 

7  0.0 (-1) 23.0 (0) 10.0  (1)  27.0±0.4 a 5.2±0.1 f,c,d,e 

8  2.0 (0) 30.0 (1) 10.0  (1)  27.9±0.4 a,j 6.3±0.1 a 

9  0.0 (-1) 15.0 (-1) 7.0 (0)  27.8±0.4 a,k 6.1±0.0 a,g 

10  2.0 (0) 23.0 (0) 7.00 (0)  33.8±0.2 d,b 5.7±0.0 g,c,e,f 

11  2.0  (0) 15.0 (-1)  4.0 (-1)  37.1±0.3 e,b,c 5.1±0.0 h,c,d,e,f 

12  4.0 (1) 15.0 (-1) 7.0 (0)  31.1±0.3 f,d 4.9±0.1 i,d,h,f,j 

13  0.0  (-1) 30.0 (1) 7.0  (0)  23.0±0.4 g 4.7±0.1 j,b,d,f,h 

14  4.0  (1) 23.0 (0) 10.0  (1)  38.8±0.1 h,c.e 4.1±0.0 k,b 

15  2.0  (0) 30.0 (1) 4.0  (-1)  23.1±0.3 i,g 5.4±0.0 l,f,g,h,j 

* w/v, weight (g) per 100 g solution; ** w/w, weight (g) per 100 g dry weight; and 100 

g, maximum theoretical mass. 
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A factorial analysis was defined to determine the functional relationship between 

processing parameters and yield, colour responses, and their combined interaction 

effects.  

Yield was defined as the percentage of constant weight dried powder recovered from 

initial mass of 100 g roots, and determined in triplicates.   

Colour difference (ΔE) was determined according to Ramirez-Navas & Rodriguez de 

Stouvenel, (2012) using CR-400 Chroma Meter, Konica Minolta Sensing Japan without 

major changes. Measurements were taken, in triplicates, on derivative powders and BI 

each, and mean values used in CIELAB L*, a*, b* using the eqn. 3.1 as described 

(Sharma et al., 2005).  

  

ΔE = √ [(ΔLʹ/kLSL) ² + (ΔCʹ/kCSC) ² + (ΔHʹ/kHSH) ² + RT (ΔCʹ/kCSC) (ΔHʹ/kHSH)]      3.1 

 

where ΔE, differences between sample and standard (S) colour parameters; S, 

background colour reference parameters; √, square root symbol; kL kC kH, parametric 

weighting factors; ΔLʹ ΔCʹ ΔHʹ, lightness, chroma and hue differences.  

A statistical analysis and individual parameter empirical model equations for yield and 

colour were performed as reported (Vicente, Martínez, & Aracil, 2007) with slight 

modifications. The design matrix for both processing parameters (actual/coded 

independent variables) and responses (yield and colour), with a total of 15 experimental 

runs are presented in Table 3.1. Each run was an average of 3 replicates. Data was fitted 

to four models (linear, combined two factor interaction, quadratic) in order to describe 

the adequacy of the experimental linear models and determine the second order 

polynomial equations, their regression coefficients and R² values. The aliased cubic 

model was not considered for analysis.  Analysis of variance (ANOVA) was used for 

regression coefficient determination, lack-of-fit test and significance of curvature effect. 

The model adequacy was determined by lack-of-fit test, residual analysis and 

coefficient of determination (R2) and illustrated visually by contour plots. Following, 

processing parameters were harmonised with properties to determine significant effects 

for optimisation purposes.  
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3.2.2.2 Simultaneous optimisation using desirability function 

 

Response surface methodology was applied to quantify factor-response associations in 

simultaneous determination of optimal processing parameters considering yield and 

colour by desirability function. Consideration of waste solids reinforced starch was 

important in order to gauge intact bitter cassava ability to produce biopolymer 

derivatives with desirable yield and colour (towards brighter colours). The lower and 

upper limits were set for buffer (2 and 4 % v/v), cassava-rich waste solids (15 and 30 % 

w/w) and extraction time (4 and 10 minutes).  

The simultaneous optimisation (desired functional combination) of buffer 

concentration, waste solids, extraction time (material balance) and biopolymer 

derivatives yield and colour were achieved by a desirability (D) approach (eqn. 3.2) and 

suggested by Derringer, (1980). The method is reported widely in literature but also 

common for multiple responses optimisation in many industrial applications.  

 

D = [dy (Y) x dc (C)] 1/n            3.2 

 

where, D, desirability; Y, yield (%); dy (Y), yield desirability function, C, colour 

difference (ΔE); dc (C), colour desirability function; n, responses (n=2); dy (Y) and dc 

(C) = 0, perfectly undesirable; dy (Y) and dc (C) = 1, perfectly desirable.  

 

In this study, for biopolymer yield, the desirability function demanded maximisation 

while colour difference minimisation. To achieve the preceding situation, the criteria set 

for material balance was: buffer, maximise concentration (range 0 – 4 % w/v); waste 

solids, in range content (15 – 30 % w/w); extraction time, maximise frequency                         

(range 4 – 10 minutes). 

 

Desirability concept: 

 

Desirability function methodology determines the working (active) parameters 

(independent variables), which provide the best desirable responses (dependent 

variables). 



Chapter 3 Standardised methodology for intact bitter cassava biopolymer derivatives 

78 
 
 

 

 

For a given dependent variable Yi(x), a desirability (D) function di(Yi) assigns “0 to 1” 

numbers to possible values of Yi, with di(Yi) = 0 (entirely undesirable Yi value) and 

di(Yi) = 1 (absolutely desirable Yi value). Individual desirabilities (Ds) by geometric 

mean give a global desirability (GD), such that, 

 

"# = %& '& ∗ 	%* '* ∗ %+ '+ ……	%∝ '∝
.
∝    3.3 

 

where, α, number of dependent variables (responses). Practically, if any response is 

completely undesirable, i.e. di(Yi) = 0, then GD = 0. Thus, according to (Derringer, 

1980), a response can be assigned a target, minimised or maximised (optimised). 

 

The whole concept is illustrated in concept 3.1 

 

 
Concept 3.1. Desirability function concept for using in multiple variable optimisations 

 

Power (exponent), s and t, determine how essential it is to hit the target value.            

For s = t = 1, the desirability function increases linearly towards Ti; for s < 1, t < 1, the 

function is convex, and for s > 1, t > 1, the function is concave. 
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Generally, in multiple response optimisation, the independent and dependent variables 

can be optimised separately or simultaneously. Furthermore, it involves: implementing 

an experiment and fitting variable models for all α responses; defining D functions for 

each variable; and target, minimise or optimise the GD with respect to the controllable 

conditions. 

 

Statistica 7.1 software (StatSoft Inc., Tulsa, USA) was used for experimental design, 

quadratic model buildings, response surfaces and charts generation, and numerical and 

graphical optimization.  

 

3.2.3 Standardisation of integrated process methodology by validation of optimal 

models  

 

Standardised methodology by validation of optimisation was accomplished by running 

experiments using optimal formulations. Results thereof were compared with optimal 

values in order to set standards for intact BC-BPD production.  

Scenarios were developed based on set objectives i.e. ‘minimise’, ‘in the range’ and 

‘maximise’, and using Design Expert (Version 9.0.4.1, State-Ease, Inc. 2015, 

Minneapolis, USA) and non-repetitive permutation approach, the most promising 

scenarios with the highest desirability (D) were found to better describe optimisation 

process.  

In addition, a maximum global desirability (GD) was achieved for both parameters and 

responses, and predicted the optimal processing parameters from the material balance. 

 

3.2.4 Impact of standardisation on Biopolymer derivatives and packaging film 

moisture barrier properties 

 

8.2.1.16 3.2.4.1 Effect on total cyanide decontamination and BPD appearance 

 

Biopolymer derivatives safety and appearance were determined by running two related 

experiments: i) testing the effect of ionic buffer (0, 2, 4 % w/v), waste solids (15, 23, 30 

% w/v), and sodium bisulphite (1, 2, 3 % w/w of waste solids) on total cyanogens (TC) 

and colour difference (∆E); and ii) sodium chloride (0, 1.5, 3 M), sulphuric acid (0, 25, 
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50 mM), and peeling (peeled, intact) on TC. The TC was determined using the cyanide 

kit developed by (Bradbury, Egan, & Bradbury, 1999) while ∆E was measured as 

described in section 2.3.1.  

 

8.2.1.17 3.2.4.2 Microstructure and chemical 

 

Biopolymer derivatives microstructural properties were examined using Scanning 

Electron Microscope (SEM), JSM-5510 (Jeol Ltd., Tokyo, Japan). A small amount of 

derivatives powder was placed on stubs using double-sided carbon tape to form a very 

thin layer and leaving a space on either side of the strip to allow clear observation of 

surfaces and cross section. Prior to capturing SEM images, powder stubs were 

spluttered with a thin layer of gold. Powder stubs were subjected to a focus 

magnifications as high as 20 000x and images capture between 200x and 30 000x 

magnification and intensity of 5 kV. 

Biopolymer derivatives were analysed for their chemical composition and their possible 

interactions resulting from use of intact root and modification by SRRC using Fourier 

transform infrared spectroscopy (FTIR). A small sample of the derivative powder was 

mixed with potassium bromide in a mortar while under the lamp heater, converted into 

thin pellets using a timed pneumatic press for 20 seconds and placed in the sample 

holder. The spectra were recorded with an UV/Vis spectrum one FTIR spectrometer 

(Perkin Elmer Lambda 35, USA), frequency range of 4000–400 cm-1 and 4cm-1 

resolution in the transmittance and absorbance modes for individual spectrum with 30 

scans at room temperature.  

 

8.2.1.18 3.2.4.3 Thermal 

 

Biopolymer derivatives thermal analysis, glass transition (Tg) and melting (Tm) 

temperatures and crystallinity (C), was conducted using a differential scanning 

calorimeter (DSC 200 F3) equipped with a thermal analysis data station. A hermetically 

sealed DSC pan with fresh derivative powder (10 mg), together with a reference empty 

pan were heated from 20 to 250°C at a rate of 10°C/min, cooled back rapidly to 20°C 

and reheated at a rate of 5°C/min to 250°C to give them thermal history. Tg, Tm, ΔH and 
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C were calculated using the built in software and determined by considering the heat 

capacity change observed on the second heating.  

Thermogravimetric analysis was carried out to establish thermal stability of derivatives 

using TG Analyser (Spectrum 500) and analysed by the Universal Analysis 2000, New 

Castle USA) between 30⁰C and 500⁰C, heating rate of 20⁰C/min, nitrogen flow of 60 

mm/min. Prior to analysis, each sample was corrected against a background scan. All 

samples were evaluated in triplicate and mean measurements reported.  

 

8.2.1.19 3.2.4.4 Moisture adsorption 

 

Thermoplastic derivative powder (100g) was dried (48 h) in a vacuum oven (600C) and 

cooled in a desiccator (2 h). Its moisture content was 8 % dry weight basis. The sample 

was placed in different relative humidity (10-90 % RH) using different saturated salt 

solutions (LiCl, CH3COOK, MgCl2, K2CO3, Mg (NO3)2, NaBr, NaCl, KCl, K2SO4) at 

20⁰C). Weight gains by the moisture-adsorbed powder, at regular interval (every 48 h), 

were obtained using an analytical balance (precision, 0.0001 g). Moisture adsorbed was 

reported as a percentage on dry weight basis. Three replicates were run.  

 

3.2.4.5 Film preparation 

 

Films were produced by solution casting using the procedure reported by Tumwesigye 

et al., (2016). Mixtures of BPD (3 % w/v) and glycerol (30 % w/w) were heated at 70⁰C 

for 25 minutes. Prior to moisture barrier characterisation, films were conditioned at 23 ± 

2 ⁰C and 54 %RH. Thickness was measured in six different locations with using an 

absolute digital Calliper (Digmatic, Mitutoyo UK Ltd). 

 

8.2.1.20 3.2.4.6 Film moisture barrier characterisation 

 

Determination of moisture adsorption (MA) characteristics followed the method 

described for BPD in section 2.5.4 with slight modifications. Film strips (3 x 1.5 cm) 

were pre-dried until constant weight for 9 h at 90⁰C.  
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Water vapour permeability (WVP) of the films was determined according to ASTM, 

(2005) method at 10, 20, 30, 40 °C and at a gradient from 0 to 75, 85 and 95% relative 

humidity. Results were expressed in gmm/m² s kPa). 

 

8.2.1.21 3.2.4.7 Moisture barrier modelling 

 

The MA and WVP data were fitted to different models (Table 3.4) in order to correlate 

equilibrium moisture content and water activity. Model parameters were estimated by 

the non-linear regression procedure using Excel (2010) solver and goodness of fit 

evaluated as mean relative percentage deviation in modulus, ρ, % (Eqn. 3.4) and 

regression variance, VR (Eqn. 3.5). Accurate mathematical description of isothermal 

was considered when ρ ≤ 5 %, VR ≤ 5 and R² ≤ 0.97. 

 

ρ,% = &//0 	123&
0 45

65 7
              3.4 

 

VR = 123&0 65 8 9	65 7
:

09&              3.5 

 

where, n, number of experimental points; ε i, absolute value; (p) and (o), predicted and 

observed. 

 

The effect of standardisation on the water uptake and diffusion characteristics of intact 

bitter cassava films was determined using eqn. 3.6 following the procedure described by 

Sultana & Khan, (2013). 

 

;<
;=
= 2 ?<

@A:

.
:              3.6 

  

Where, Mt, moisture weight uptake at time (t); Me, moisture weight uptake at 

equilibrium (e); l, film thickness; and D, diffusion coefficient, which was calculated 

from the slope by plotting Mt / Me  against t1/2.  
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To predict long-term behaviour of intact bitter cassava materials, the temperature-time 

dependence of WVP was determined by fitting experimental data to Arrhenius and 

time-temperature superposition of William-landel-Ferry (WLF) models.  

 

3.3 Results and discussion 

 

3.3.1  Integrated process methodology for production of novel intact bitter 

cassava biopolymer derivatives (BC-BPD)  

  

Process integration methodologies are fundamental techniques for designing sustainable 

methodologies, processes and materials for broad range applications. In this study, a 

process integration methodology was developed, optimised, and standardised to provide 

important means of achieving environmental-resilient approaches for production of 

intact bitter cassava biopolymer derivatives suitable for both food and non-food 

applications.  

The standardised methodology demonstrates an integrated process that uses cheap novel 

intact bitter cassava and SRRC approach for sustainable biopolymer derivatives 

production and cassava waste reduction. 

 

3.3.2 Optimisation of BPD production by Desirability  

 

Yield is an indicator of any process efficiency and economy (Mudgal et al., 2012). 

Biopolymer derivatives (BPD) yield is shown in Fig. 3.1 & Table 3.1, revealing that 

parameter main effects and their interactions had a significant (p<0.05) impact on yield. 

Except for buffer-waste solid and buffer-extraction time interactions with linear and 

quadratic negative impacts, all main effects and their sole interactions with time had 

linear positive effects on yield. The increased yield signalled the intact BC-SRRC 

process efficiency. Unlike sweet cassava (SC) which yielded 17-26 % w.b., intact BC-

BPD presented higher yields (23-39 % w.b.) when SRRC was employed (Tumwesigye 

et al., 2016), signifying that BC could be the future sustainable source of BPD 

production for industrial applications. 
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Figure 3.1. Model fitting, residual plots and normal distribution for effect of processing parameters 

on biopolymer derivatives (BPD) a) yield and b) colour change, ΔE.  
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Colour difference (ΔE) results are presented in Fig. 3.1 &Table 3.1. Extraction time had 

a highly significant positive linear effect as compared to linear buffer positive, buffer-

extraction time positive and buffer-waste solid interaction negative effects on ΔE. In 

this study, major parameter interactions presented negative effects on ΔE. Similarly, it 

was shown that increasing extraction time reduced the BPD brightness, due to high 

positive effects. Conversely, negative parameter interactions (I) impacts on ΔE implied 

brighter colours. Thus, optimising the formulation was necessary to obtain trade-offs 

and produce industrial-appealing BPD. 

Production of intact BC-BPD through integrated methodology showed, 0-1.3, 92, 3.6 

for ΔE, luminosity parameter (L*) and chroma (C*), respectively. Production of SC-

BPD from peels and bagasse (Versino et al., 2015), showed, ΔE, values ranged from 11-

28, 10-22 and 78-90 for ΔE, L*, and C*, respectively. Comparably, previous work 

using intact SC root under similar SRRC processing conditions produced BPD with 1.1-

4.6, 88-92 and 0.5-1.0 for ΔE, L*, and C*, respectively (Tumwesigye et al., 2016).  

Therefore, an integrated process methodology and SRRC produced BPD higher yields 

and lower colour difference (ΔE) than previously reported, providing positive evidence 

for future production of sustainable low-cost BPD. 

Variations in processing parameters led to significant changes in BPD yield and colour 

(Table 3.2). The ANOVA regression coefficients, p-values, R2, significant curvature 

and lack of fit test (Table 3.2) showed that the quadratic models were highly significant 

(p < 0.05) for all responses while an aliased condition occurred for cubic models. 

Therefore, the second order polynomial model equations (Eqns. 3.7 & 3.8) adequately 

described the association between buffer concentration, waste solid content, extraction 

time and BPD yield and colour. Additionally, yield and colour R² of greater than 90 % 

and 82 % respectively suggested that data explained the adequacy and significance of 

the models.  

 

Yield, %   = 31.110 + 2.901 B - 3.483 W – 1.123 T + 2.939 BW + 2.974 BT + 3.515 

               WT + 0.152 B2 – 1.276 W2 - 0.825 T2 + 1.696 BW2 + 3.991 B2W     

                + 3. 590 BT2       (R² = 0.91)                     3.7                 

 
Colour, ΔE, %   = 5.142 - 0.388 B + 0.442 W + 0.142 T + 0.534 BW - 0.140 BT  

                                + 0.276 WT + 0.068 B2 + 0.127 W2 + 0.136 T2 + 0.306 BW2   

                                              - 0.639 B2W - 0.837 BT2      (R²=0.83)         3.8 
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where, B, buffer concentration (% w/v); W, waste solid (% w/w); T, extraction time. 

 

Table 3.2. Analysis of variance of effects of a) processing conditions on total 

cyanogen and colour, and b) peeling on total cyanogen. 

a) 

Parameter Sum of Squares (SS) 

Total cyanogens Colour difference, ∆E 

 

(1)Buffer  L+Q 

 

0.0164** 

 

0.9214ns 

(2)Waste  L+Q 9.1808ns 0.20632* 

(3)Sodium bisulphite  L+Q 16.8033* 4.22208* 

1*2 23.0613* 6.42021* 

1*3 68.5222* 4.62008* 

2*3 4.2222* 0.9148* 

 

Error 4.334 3.29029 

Total SS 118.5975 18.9811 

R2  0.97 0.83 

 
* Significant at 1% level; ** Significant at 5% level; ns, not significant  
b) 

Parameter Sum of Squares (SS) 

Total cyanogens 

  

(1)Sodium chloride  L+Q 39.7139* 

(2)Sulphuric acid  L+Q 4.8668* 

(3)Peeling  L 74.8370* 

1*2 4.2133* 

1*3 7.1268* 

2*3 5.5200* 

Error 4.5923 

Total SS 140.8700 

R2  0.97 

* Significant at 1% level 
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Processing parameters had a higher influence on yield than colour difference (ΔE), as 

shown by results from Equations 3 and 4. However, based on the importance of both 

yield and colour of BPD, a trade-off was necessary in order to balance their production, 

leading to acquisition of an optimal formulation. Thus, the criteria were set to establish 

the maximum yield and minimum ΔE with the best desirability function (D). 

Accordingly, 21 scenarios were developed based on set objectives, and using Design 

Expert and non-repetitive permutation approach, 11 promising scenarios with the 

highest D were found to better describe optimisation process (Table 3.3a). In addition, a 

maximum global desirability (GD) of 1.0 was achieved for both parameters and 

responses, and predicted material balance of buffer concentration, 4.0 % w/v, cassava 

waste solids, 23 % w/w and extraction time of 10 minutes. Meanwhile, the processing 

parameter balance simultaneously predicted yield and colour difference of 38.8 % and 

4.2 (reciprocal, 0.24) respectively.  

 

3.3.3  Standardisation of integrated process methodology by validation of optimal 

models’  

 

8.2.1.22 3.3.3.1 Optimal model’s validation 

 

The best formulations were predicted at the highest waste solid content (10 % w/w) and 

extraction time (10 minutes), as shown in Table 3.3a, and the best D did not predict 

highest yields and lowest ΔE. Thus, applying zero-based standardisation approach 

(Anderson, 2014) and sustainability (Essel & Carus, 2014), within the experimental 

scope, most important desirability values and corresponding parameters and responses 

were selected (Table 3.3a, asterisk).  

Validation of the optimisation process in order to develop a standardised methodology, 

BPD were produced using the 4 optimal formulations (Table 3.3a, asterisk) including 

GD analysed for yield, and the results thereof compared with optimal values using mean 

relative deviation modulus (ρ) (Table 3.3b). Although there were significant colour 

differences in the 15 formulations, biopolymer derivatives did not show any differences 

visually. Applying the ASTM’s E313 yellowness index measure, BPD whiteness did 
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not show much deviation from perfect white (100 % lightness). This, coupled with BDP 

similar visual appearance, colour was not considered in the validation process.  

 

 Table 3.3. Optimised intact bitter cassava biopolymer derivatives (BPD) a) 

individual response desirability using non-repetitive permutation 

approach, and b) validated optimal yield for global standardised 

methodology. 

 

 (a) 

Permutation Buffer,      

% w/v 

Waste solids, 

w/w % 

Extraction 

time, Min. 

Yield, % Colour 

change, ΔE 

Desirability, 

D 

A 3.6 30 10 43 4.8 0.87 

B 3.7 30 10 43 4.8 0.89* 

C 3.7 30 10 43 4.8 0.86 

D 3.4 30 10 41 4.5 0.87 

E 3.4 30 10 41 4.5 0.87 

F 3.3 30 10 41 4.5 0.87* 

G 3.2 30 10 40 4.5 0.87 

H 2.9 30 10 39 4.5 0.92 

I 2.9 30 10 39 4.5 0.94* 

J 2.9 30 10 39 4.5 0.93 

K 3.1 30 10 39 4.5 0.93* 

 

(b)  

Permutation Buffer,      

% w/v 

Waste 

solids, 

w/w % 

Extraction 

time, Min. 

Optimal 

yield, % 

Experimental 

validated yield, 

% 

Mean relative 

deviation 

modulus  ρ, % 

B 3.7 30.0 10 43.0 42.3 24.5 

F 3.3 30.0 10 41.0 40.7 4.5 

I 2.9 30.0 10 39.0 37.8 72.0 

K 3.1 30.0 10 39.0 38.4 18.0 

GD 

formulation 

4.0 23.0 10 38.8 38.4 8.0 
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8.2.1.23 3.3.3.2 Standardisation of integrated process methodology  

 

As shown in Table 3.3b, it was evident that ρ values less than 10 % illustrated a good 

agreement of optimal values with experimental validation values. Furthermore, the ρ 

value of less than 5 % showed a stronger association, indicating that parameter 

adjustment sufficiently responded to higher BPD yields. The BPD yield slightly above 

40 %, corresponding to the dry solids range of cassava roots, showed the capability for 

the developed method to use most waste solids.  

Thus, using an integral methodology, incorporating intact root with 23-30 % w/w waste 

solids, 4 % v/v ionic buffer concentration and 10 minutes extraction time, could be 

applied for sustainable production of BPD. This integral methodology is a systematic 

approach for the production of BPD from intact (whole) cassava root in three major 

steps. It intended to support production of high yield and bright coloured BPD in an 

integrated economic, relatively short time production process and to impart some level 

of modification necessary in their applications. 

  

3.3.4 Impact of Standardisation on Biopolymer derivative properties and 

packaging film moisture barrier properties 

 

8.2.1.24 3.3.4.1 Appearance 
  

 

The produced BPD exhibited bright powders with uniformly distributed and semi-

flowing particles (Fig. 3.2), demonstrating the potential of standardisation to turn wastes 

into value added bioproducts. Transparency is always a requirement in packaging foods 

in which their identities and visibilities are highly valued. Thus, BPD total cyanogen, 

colour, microstructure and chemical properties, thermal and adsorption behaviour were 

further investigated. Transparent films are generally used in food packaging when other 

properties such as barrier, mechanical or thermal are adequate. Therefore, BPD 

moisture barrier properties were determined together with the developed films in order 

to determined impact of standardisation on these vital properties. As pointed out earlier, 

the higher BC yield compared to the yield of analogue SC could point to the unique BC-
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BPD. Thus, the impact of standardized methodology of optimal BC-BPD, i.e., GD was 

compared with SC-BPD.  

a                                                                                  b 

 
Figure 3.2. Illustration of a) intact bitter cassava root and b) biopolymer derivatives 

(BPD) example. 

 

8.2.1.25 3.3.4.2 BPD dull colour and total cyanogen decontamination  
 

 

Total cyanogens (TC) and colour were found to reduce and brighten, corresponding to 

increase in the biopolymer derivatives yield, when intact (whole) bitter cassava was 

processed following a previously developed SRRC methodology (Tumwesigye et al., 

2016). TC and colour decontamination is achieved through functionalising bisulphite 

and acid reaction during SRRC. When compared with the conventional cassava 

processing methods, the SRRC produced biopolymer derivatives with far less TC 

(Tumwesigye et al., 2016). Therefore, to determine the impact of integrated process 

methodology on safety and appearance of derivatives, TC reduction and/or possible 

elimination, and colour brightening were established. The analysis of variance results 

are shown in Table 3.2a.  As observed in Table 3.2a showing the sum of squares, the 

combined effects of ionic buffer and bisulphite, ionic buffer and wastes, and sole 

bisulphite presented the highest (p < 0.01) TC reduction potential. Similarly, their 

impact on colour difference (∆E) did not deviate much from that of TC. These results 
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can be attributed to: i) the enhanced TC intrinsic hydrolysis by the intact root (Eqn. 3.9) 

during SRRC process; ii) reductive effect of the food grade sodium bisulphite (Eqn.  

3.10); and iii) ionic buffers providing acid environment for hydrolysis. 

 

 
 

The effect of peeling factor on TC, practiced in traditional processing, was also 

determined and results shown in Table 3.2b. The peeling factor showed a much higher              

(p < 0.01) TC reductive effect, that using whole root is more important in reducing 

cyanide from bitter cassava. 

 

3.3.4.3 Microstructure and chemical 
 

The scanning electron micrographs (SEM) of BPD are presented in Fig. 3.3a, showing 

heterogeneous particle sizes for SC (Fig. 3.3ai) and optimal GD (Fig. 3.3aii) with round 

and polygonal shapes (Doporto, Dini, Mugridge, Viña, & García, 2012). Although 

slightly bigger round granule size range occurred in GD (11.79-17.00 µm) than in SC 

(7.50-14.9 µm), over all particle size distribution did not differ, suggesting that the 

optimal GD formulation produced near similar BPDs. Unlike in the externally 
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reinforced starch biocomposites, whereby cellulosic and other fibrous materials were 

observed surrounding the starch granules (Versino & García, 2014; Versino et al., 

2015), SRRC allowed a more homogenous mixture with minimal material surrounding 

starch granules (Fig. 3.3ai & ii). 

Fourier transform infra-red (FTIR) spectroscopy applied to gain insight into structural 

alterations and possible physical and chemical interactions in SC and optimal -GD BPD 

as a function of optimisation are illustrated in Fig. 3.3b. Despite the SC and GD spectra 

looked similar, manifesting clear patterns, GD exhibited high absorption intensity than 

SC.  The differential absorption intensities could be explained by the differences in 

chemical composition (Tumwesigye et al., 2016; Versino et al., 2015), and perhaps 

might suggest that SRRC seems to release more chemical components in BC than in the 

SC analogues.  This result is supported by the higher BC yields attributed to more BPD 

compounds by SRRC. In addition, the peak band gap dissimilarities might be due to 

differences in the structure, with the broader band of GD revealing the more amorphous 

regions in BC-BPD.  

 

  ai       aii 
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bi       bii 

 
Figure 3.3.  Scanning electron micrograph a) and Fourier transmission infra-red spectra, b) analysis 

of biopolymer derivatives at optimum conditions using sweet cassava (SC) (ai & bi) or 

intact bitter cassava global desirability (GD) (aii & bii). 

 

Apparent interactions largely depended between hydrogen bonding of hydroxyl 

functional groups in starch, cellulose, hemicellulose, pectin and some polyphenols 

(tannin) (Bodirlau, Teaca, & Spiridon, 2013; Tumwesigye et al., 2016) due to an 

observed broad peak between 3000 and 3500 cm-1, manifesting alcohol O-H, alkyne C-

H stretching vibrations. Additionally, the peak at around 1700 cm-1 is an indication of 

associations between carbonyl groups among the compounds mentioned above.  

However, the interaction phenomenon was non-existent beyond 3500 cm-1 with absence 

of amine C-H stretching vibrations indicating that there were insignificant total cyanide 

and protein contents. The low protein content could be explained by the protein-tannin 

complexing in BPD. 

 

8.2.1.26 3.3.4.4 Thermal 

 

The differential scanning calorimetric (DSC) thermograms of BPD demonstrated that 

the processing history was similar for SC and GD (Fig. 3.4a) despite the higher GD 

melting (Tm) and glass transitional (Tg) temperatures and lower crystallinity (C) than 

SC. Both SC and GD presented sharp and narrower melting endotherms in temperature 

ranges, 150-205°C for SC and 180-205°C for GD, than earlier reported (A. P. Kumar & 

Singh, 2008). Additionally, SC and GD exhibited bimodal endotherms at about 70 and 
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110°C as reported by De Meuter, Amelrijckx, Rahier, & Van Mele, (1999). The 

differences in melting transitions between SC and GD could be due to more component 

hydrogen bond interactions in GD than SC caused by waste solids incorporation. Both 

SC and GD did not show any water crystallisation due to amylopectin since there were 

no visible endotherm changes between 50 and 120°C (A. P. Kumar & Singh, 2008) 

rather a shift to above 150°C Tm, possibly due to incorporation of waste solids. 

 

 
Figure 3.4.  DSC (a) and TGA (b) analysis of intact bitter cassava (BC) and sweet cassava (SC) 

biopolymer derivatives (BPD). S1 & S2, DSC thermograms of SC BPD for first & 

second heating; S, TGA decomposition curve of SC BPD; GD1 & GD2 global 

desirability, DSC thermograms of BC BPD for first & second heating; and GD global 

desirability, TGA decomposition curve of BC BPD.  
 

A similar pattern of SC and GD due to thermal effect is exhibited by thermogravimetric 

analysis (TGA) (Fig. 3.4b). TGA revealed that BPD thermal stability of SC and GD 

followed same pattern during the decomposition period (30-400⁰C), with highest weight 

loss observed at 335-380°C. In both cases, the almost linear decomposition stability up 

to 300°C could be due to stability of BPD resisting fast decomposition as exemplified 

by DSC analysis (Fig. 3.4a).  

 

8.2.1.27 3.3.4.5 BPD moisture adsorption behaviour 

 

Isotherms of BPD powders require a lot more time than BPD films, and thus SC was 

not considered in the adsorption studies. Fitting of sorption models to experimental data 

of the equilibrium moisture contents of BPD is shown in Table 3.4. The three models 

followed type II isotherm (Green & Perry, 2008) and demonstrated an increase of 
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moisture content corresponding to increasing water activity. The models’ estimated 

parameters for BPD and R2, mean relative deviation modulus (ρ) and variance of 

regression (VR) constants are presented in Table 3.4. The higher R2 and the lower ρ and 

VR signify the goodness of fit. While all the three models presented low ρ and VR, 

Peleg model provided the best fit when the BPD was subjected to the whole range of 

water activity and temperatures of 10, 20 and 30 ⁰C. Monolayer moisture contents (mo) 

of BPD using GAB and BET models were similar and decreased with increase in 

temperature. 
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Table 3.4. Fitted sorption models and estimated parameters for intact bitter cassava BPD (a) and film diffusion coefficients (m²s-1) (b) at 

various temperatures and relative humidity.  

 

(a) 

Model name Equation Parameters at various temperatures (ᵒC) 

   10 20 30 

Modified BET, 

Brunauer, 

(1943) 

 

 
MMC, % d.b. 9.90-67.44 2.07-53.24 2.00-50.46 

MO 17.98 16.18 15.46 
C 10.38 2.73 2.66 
Ṗ, % 4.08 4.29 3.42 

VR,% 1.13 0.41 0.28 
R² 1.00 1.00 1.00 

    

Oswin,  

Chen & Morey, 

1989) 

 

 

MMC, % d.b. 7.98-65.59 3.81-54.55 3.57-51.95 
K 0.48 14.90 14.20 
C 22.88 0.59 0.59 
Ṗ, % 9.58 4.01 4.50 

VR,% 5.03 0.73 0.38 
R² 0.99 1.00 1.00 

    

Peleg, 

Peleg, (1993)  
MMC, % d.b. 10.92-67.49 4.10-54.12 3.92-51.42 

A 28.04 29.32 27.35 

B 0.41 0.91 0.92 
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C 83.53 81.20 67.55 

D 6.84 10.05 8.78 

Ṗ, % 3.26 5.58 3.13 

VR,% 0.59 0.53 0.12 

R² 1.00 1.00 1.00 

            

Arrhenius, 

Arrhenius, 

(1874) 

 

 

aw 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Ep 43106.6 303887.7 22983.8 17893.7 14414 12472.6 11859.8 11462.9 9609.9 

P0 1.03E-07 3.21E-05 9.1E-04 8.03E-29 0.05 8.22 0.12 0.32 1.11 

R2 0.92 0.93 0.95 0.97 0.98 0.98 0.94 .92 0.99 

 

P, mean relative deviation modulus; VR, standard error of estimate; R², coefficient of determination; Meq, equilibrium moisture content; MMC, modelled moisture content; 

Mₒ, monolayer moisture content; d.b., dry basis; aw, water activity; A, B, C, D, K, models’ coefficients; P, water vapour permeability; P0, pre-exponential factor; Ep, 

activation energy for permeation; R, gas constant (8.314 J/mol K); T, temperature (expressed in .K) 
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(b) 

 

Temp, ⁰C Relative humidity, % 

 75 85 95 

10 4.02051E-12 4.04668E-12 4.03098E-12 

20 4.01528E-12 4.03883E-12 4.04798E-12 

30 4.03621E-12 4.03752E-12 4.05322E-12 

40 4.11994E-12 4.1448E-12 4.90538E-12 
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The low mo at high temperatures coincided with absence of visible mould at high 

relative humidity above 70 % RH within 6 weeks of storage.  

Like any other food material, BPD moisture adsorption decreased with increasing 

temperature as shown by mo values (Table 3.4). 

 

8.2.1.28 3.3.4.6 Film moisture barrier properties 

 

The moisture barrier property of materials is essential to approximation and prediction 

of the product-package shelf-life, with a precise package system barrier requirement 

governed by the product characteristics and the targeted applications. Moisture 

regulation in packaging can cause negative changes in product quality and shelf-life, 

and change package material characteristics.  

As shown in Table 3.4a, there was a decrease in activation energy (Ep) of permeation 

and an increase in pre-exponential factor (Po), which proves a usual pattern of global  

(Arrhenius-type) model- dependency of temperature, and an activation energy 

independent of RH, with a pre-exponential factor varying exponentially. The diffusion 

coefficients (D) (Table 4b) showed insignificant increased trends with increases in both 

temperature (T) and relative humidity RH), which suggest that there were minimal 

physical and chemical changes in film matrix.  The minimal structural changes might be 

due to the compact packing density in the structural matrix. As compared to previously 

tested materials for thin films and scaffolds (Sultana & Khan, 2013), intact bitter 

cassava film D for the entire RH are much smaller than polyhydroxy-butyrate-co-

hydroxyvalerate (PHBV) (593E-12 m²/s), PHBV + polylactic acid (PLLA) (598E-12 

m²/s) and PHBV + PLLA + hydroxyapatite (229E-12 m²/s) films. Therefore, the film 

provides interesting potential barrier properties that can be used in developing films, not 

only for food use but also there is a possibility of their wide application.  

 

The temperature-time dependence of WVP as predicted by Arrhenius and William-

landel-Ferry models is presented in Fig. 3.5, showing linearity of the plots and best fits. 

The linearity confirms that water uptake is regulated by the diffusion process (Sultana & 

Khan, 2013). It has been reported that WLF model allows for estimation of temperature 

shift factors by extrapolation, thereby being able to predict the life-span of products 

(Sullivan, 1990).  
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Figure 3.5.  Standardisation effect on film moisture barrier properties as influenced by a) 

temperature, b) relative humidity, c) temperature-time dependence of WVP as predicted 

by Arrhenius and William-landel-Ferry (WLF) models, and d) time-temperature 

superposition of William-landel-Ferry (WLF) model. 

 

Together with Arrhenius model, the shelf-life of materials with temperatures close to 

and above their glass transition (Tg) can be estimated. In this study, BPD and films with 

Tg of around 40⁰C (Fig. 4a), corresponding to WVP test temperatures of 40⁰C, were 

produced from intact bitter cassava, suggesting that the above models are applicable to 

this polymer. 
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Conclusion 

 

A standardised simple, integrated methodology which allowed efficient and low-cost 

production of biopolymer derivatives (BPD) from novel intact BC was developed. 

Employing an integrated methodology, incorporating intact BC root with 23-30 % w/w 

waste solids, 4 % v/v ionic buffer and 10 minutes extraction time, allowed production of 

more BPD compared to a commercial method using SC.  

The BPD yield of 41 % showed that it is possible to utilise the nearly the whole root 

during processing since the root dry matter contents of most cassava varieties lie 

between 40 and 45 %. It can be concluded that the standardised methodology is an 

efficient process and could be used as a simple, low cost and sustainable method in 

production of BPD. This has implications in eliminating the triple BPD preparation 

steps, production, reinforcements and modifications, as separate entities that increase 

energy in industrial production of materials.  

SEM, DSC, TGA, FTIR and moisture barrier analyses revealed a uniform 

microstructure, high thermal stability of BPD, and promising good barrier properties, 

thus demonstrating efficient performance of the integrated standardised methodology. 

Standardised integrated methodology for production of biopolymer derivatives (BPD) 

from novel intact bitter cassava was demonstrated by desirability optimisation, allowing 

sustainable low cost production of BPD for a broad range of applications. 

Methodologies designed around standard integrated procedures, matching zero-based 

approach to contamination elimination, are novel strategies, and if they are used 

effectively and widely can provide better avenues to eliminate cassava wastes and 

recover BPD resources as sustainable biomaterials. 
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Chapter 4. Quantitative and mechanistic analysis of impact of novel cassava 

processing on fluid transport phenomenon in humidity-temperature-

stressed biobased films 

 

Abstract 

 

Realistic performance and integrity of packages are mainly determined by their resilience in 

highly variable storage humidity and temperature. Package resilience is a function of its 

ability to timely respond to these variable conditions and manage its barrier to moisture and 

gases appropriately. Biobased materials have been proposed as alternatives to solve current 

poor barrier properties of packages. Nonetheless, the sensitivity of biobased materials to 

variable moisture and temperature has more often posed a challenge to balanced mass 

transfer in packages, and thus causing decreased in-package product shelf-life. Studies to 

quantify mass transport behaviour in biobased materials have been limited to representations, 

mainly of water vapour and gas transfers, which might be imperfect to understand fully mass 

transport phenomenon. This study reports the quantitative representations as well as 

underlying mechanisms that define mass transport phenomenon of fluid-phase solvents in 

cassava packaging films under highly variable relative humidity and temperature. Time 

dependent behaviour of BC films is analysed, and models accounting for the effect of 

Simultaneous Release Recovery Cyanogenesis and their predictive efficacy are studied.  

Intact bitter cassava films were tested for solvent solubility, swelling ratio, sorption and 

permeability to water vapour and oxygen at different temperature, 10-40 and relative 

humidity, 10-90% (adsorption) and 75, 85 95% (transfer rates). Film’s structural alterations 

were characterised by their thermal and chemical properties. Results indicate that Modified-

BET (R2, 1.0; deviation, 3-4%) and Peleg (R2, 1.0; deviation, 3-5%) models best described 

the sorption data. The temperature dependence of permeability for water vapour through 

films is best simulated by Arrhenius and WLF models (R2, 0.999), while that of oxygen was 

influenced by crystalline and high RH.  

The diffusion of non-organic and organic solvents through films follow case II non-

diffusional and Fickian patterns, respectively. Solvents through films induce structural 

changes in IBC films with concentration-dependent diffusion. 

The integrity of the cassava biobased films will depend on the host environment, and 

maximum care should be ensured to minimise environment effects in the distribution chain. 
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Key words: Quantitative, Mechanistic, Cassava film, Mass transfer, Fickian diffusion, 

Temperature-dependence  

 

4.1 Introduction  

 

Cassava biobased films (CBF) are widely produced to replace non-biodegradable plastics for 

broad range functional applications such as guarding food and non-food products against 

physical, chemical and microbiological hazards throughout the distribution chains. As 

industrial demand for CBF becomes a reality, it is expected that these materials will be 

applied at different temperatures and relative humidity (RH). Highly variable temperature and 

RH is the main physical threat, along the distribution chain, that enhance chemical and 

microbiological risk to products, and thus create challenges to the development of suitable 

packaging materials (El-Ramady et al., 2015). In particular, biobased materials are sensitive 

to moisture fluctuations (Mekonnen et al., 2013; Joffe et al., 2014). Thus, an understanding of 

the phyisco-chemical and microbiological resilience nature of the CBF will play a crucial role 

in developing sustainable packaging materials that ensure product integrity. This can be 

achieved by quantifying the transport phenomenon, through dissecting its mechanisms that 

underlie fluid (moisture and gas) transfer in CBF. Although research on fluid transport 

mechanisms through biobased materials remain inconclusive, it is widely known that fluid 

permeability through polymer membranes is largely a function of: (i) solubility and 

diffusivity (George & Thomas, 2001; Choudalakis & Gotsis, 2009); and (ii) material 

composition, structure and mechanical properties (Cheng et al., 2012; Dubreuil et al., 2003). 

Unlike in commercial materials utilizing liquid solvents, a unified approach to quantity and 

describe the complex mechanisms of mass transport in biobased packaging materials is still 

shaky. As the integrity issues of packages become more apparent in their applications, so are 

the requirements to develop novel materials and precise methods that ensure proper 

regulation of barrier properties across differentiated environmental conditions in the 

distribution chain. 

 

The barrier properties of packages are commonly determined by applying existing 

fundamental empirical mathematical models. Several model references for describing effect 

of temperature and relative humidity on moisture adsorption and permeability to water 
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vapour and oxygen have been widely used in different films (Belibi et al., 2014; A. C. Souza 

et al., 2012; Y. Zhong & Li, 2011). Models for sorption isotherms include diffusion-

adsorption equation that eliminates thickness effect in assessing adsorption of  hydrophilic 

films (Yoshida, Antunes, Alvear, & Antunes, 2005). Other models related to sorption-

diffusion and solubility are also described using Fickian theories (Bedane, Huang, Xiao, & 

Elc, 2012; Ni, 2011; Sultana & Khan, 2013). Sorption isotherms for cassava was evaluated 

using Peleg model in flour film (Suppakul et al., 2013); BET, GAB, Henderson and Oswin 

models for starch and soy protein concentrate edible films (Chinma, Ariahu, & Abu, 2013; 

Mali, Sakanaka, Yamashita, & Grossmann, 2005). The water vapour and oxygen/carbon 

dioxide transmission rates as function of relative humidity and temperature are often 

described by fitting the data to Arrhenius and Williams–Landel–Ferry (WLF) models 

(Lazaridou, Biliaderis, Bacandritsos, & Sabatini, 2004; Sopade et al., 2002).  The models 

described above are only quantitative representations that use concentration-time and mass 

flux-time curves to describe mass transfer behaviour of solvents through film membranes (M. 

J. Chen et al., 2015; Cheng, Chen, Cheng, Lin, & Lai, 2012; Xu & Que Hee, 2008). 

Alternative mechanical assessment techniques that provide useful insights into underlying 

mechanisms of processes have been applied in understanding of the dissolution behaviour of 

crystals under the influence of ionization and micellar solubilisation (Cao, Amidon, 

Rodriguez-Hornedo, & Amidon, 2016), modelling mass balances, flux capacity, fluid 

permeation through compressible fibre beds (Zhu, Pelton, & Collver, 1995) and reaction 

directionality constraints to predict fluxes through metabolism (Cotten & Reed, 2013). 

Recently, the contribution of seals to the permeability of thermosealed packages has been 

quantified, showing approximately 25 % of the system total mass transfer (Reinas, Oliveira, 

Pereira, Mahajan, & Poças, 2016). Taken together, the quantitative and mechanistic 

approaches could be used to describe properly the mass transport phenomenon and provide 

avenues in CBF development.  

 

Although quantitative assessment has been significantly used to understand the barrier 

properties of polymeric materials (PM), little has been done to assess fluid transport 

mechanisms through PM in stressed temperature and relative humidity environments. This 

may be partly due to the limited research validation of PM under realistic natural conditions. 

Furthermore, there are still scarce literature reports about the quantitative evaluation of effect 

of temperature and relative humidity on the barrier properties of CBF. Moreover, the 
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insignificant validation research under realistic conditions is largely shared by CBF. Starch, 

in combination with natural fibres, is often used to manufacture whole bio-based composites. 

While there are direct benefits to use natural fibres in composites, their performance is often 

very nonlinear, due to their highly sensitivity to moisture and temperature (Joffe, Rozite, & 

Pupurs, 2013).  

Recently, a combination of a novel bitter cassava (BC) material and an improved 

simultaneous release recovery cyanogenesis (SRRC) processing methodology resulted into 

development of new low-cost biobased  film, which demonstrated potential use in food 

packaging (Tumwesigye, Oliveira, et al., 2016). In order to develop sustainable materials 

with efficient barrier properties, an understanding of the association between structural 

characteristics of BC and underlying mechanisms that define fluid mass transport 

phenomenon as well as their quantification is necessary. 

 

While poor barrier properties are often associated with hydrophilic nature of CBF, their 

limited validation in realistic conditions, as well as the quantitative analyses that disregard 

underlying mass transport mechanisms under highly variable relative humidity and 

temperature, influence package use. The objective of this study was to determine moisture 

sorption characteristics as well as permeability to water vapour and oxygen of intact bitter 

cassava films; and evaluate the relevance of the various models in predicting barrier 

performances in simulated realistic conditions of different relative humidity for specific 

storage temperature. Furthermore, to provide an understanding of the mechanism of mass 

transport phenomena of water vapour and oxygen through the film under similar storage 

conditions, relevant models which relate to solubility, diffusion and adsorption laws were 

applied. The models were then related to the film structural (chemical and thermal) 

characteristics, determined using Fourier Transform Infrared (FTIR) and Differential 

Scanning Calorimetry (DSC). This was done in order to assess the adequacy of the models to 

predict nature of mass transport, and the time-dependent behaviour, and impact, of novel BC 

and SRRC.  
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4.2 Materials and methods 

 

4.2.1 Materials 

 

Films were produced by solution casting using the procedure reported by Tumwesigye et al., 

(2016). Mixtures of BPD (3 % w/v) and glycerol (30 % w/w) were heated at 70⁰C for 25 

minutes. Prior to moisture barrier characterisation, films were conditioned at 23 ± 2⁰C and 54 

%RH. Thickness was measured in six different locations using an absolute digital Calliper 

(Digmatic, Mitutoyo UK Ltd). 

 

4.2.2 Mass transport characterisation 

 

8.2.1.29 4.2.2.1 Moisture barrier (MB) 

 

The MB characteristics were determined in terms of moisture adsorption (MA) and water 

vapour permeability (WVP).  

Determination of MA characteristics was done by creating an environment of specific relative 

humidity with glycerol solution (0 % to 100 % v/v). Various methods of creating specific 

relative humidity environments such as saturated salt solutions have been proposed (ASTM 

E104, 2012). However, glycerol was preferred due to its lone advantage and ease in making 0 

– 100 % v/v solutions that are cheap, non-corrosive and do not vary with temperature 

changes.  

Film strips (3 x 1.5 cm) were pre-dried until attaining constant weights, achieved at 90⁰C for 

9 h.  Film MA was determined at 10, 20 and 30⁰C, and 10-90 %RH in controlled chambers 

and the final moisture content (MC) calculated, on a dry basis, according to Eqn. 4.1. 

 

MC,% = '()*'(+
'(+

100                  4.1 

 

where, Mio, initial mass (equilibrated for 48 h at predetermined constant pressure and relative 

humidity) and Mit, final mass at time, t (equilibrated films dried at 105oC for 29 h). 
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The WVP was determined according to ASTM, (2005) method at 10, 20, 30, 40°C and at RH 

gradients across the film of 75, 85 and 95 % using Eqn. 4.2. The detailed procedure was 

followed based on Tumwesigye et al., (2016) without changes. Concisely, films strips (7.4 

cm diameter) were mounted on acrylic cells and hermetically sealed around the open transfer 

zone. Calcium chloride and salt solution were used to create 0-75, 0-85, 0-90 %RH gradient 

between inside the cells and outside hermetically sealed chambers respectively.  Weights 

were taken after every 2 h for 10 h. Results were expressed in gmm/m² s kPa). 

 

. = ./ +
12
3 ∗ 	6 ∗ 78	 9:; − 9:=

>
       4.2 

 

where, m, film weight at time t; mₒ, initial film weight; Pw,  permeability; δ, thickness; A, 

exposed film area; Ps, partial pressure of saturation at temperature considered; aw, relative 

humidity of the environment with aw1 = 1 and aw1 = 0. 

 

8.2.1.30 4.2.2.2 Gas barrier 

 

The gas barrier characteristics were determined in terms of permeability to oxygen (PO2). 

The PO2 was measured following the method described by Abdellatief et al., (2015) and 

reported in Tumwesigye et al., (2016) without significant modifications using a PBI 

Dansensor (CheckMate 9900, USA). The PO2 was determined at the temperature of 10, 20, 

30 and 40⁰C and RH gradient of 0-75, 0-85 and 0-95 %. The possible leakage within testing 

chambers was tested with an empty chamber and found to lie within minimum mean limits 

(1.5 x 10-3 cm3 / (m2 day). Triplicate tests were considered and mean values for calculating 

PO2 expressed as cm3 / (m2 day). 

 

8.2.1.31 4.2.2.3 Fluid barrier modelling 

 

The MA and WVP data were fitted to different models (Table 4.1) in order to correlate 

equilibrium moisture content and water activity. Model parameters were estimated by the 

non-linear regression procedure using Excel (2010) solver and goodness of fit evaluated as 

mean relative percentage deviation in modulus, ρ, % (Eqn. 4.3) and regression variance, VR 
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(Eqn. 4.4). Accurate mathematical description of isothermal was considered when ρ ≤ 5 %,            

VR ≤ 5 and R² ≤ 0.97. 

 

ρ,% = ?//@ 	ABC?@ DE
FE G

                    4.3 

 

VR = ABC?@ FE H *	FE G
=

@*?                     4.4 

 

where, n, number of experimental points; ε i, absolute value; (p) and (o), predicted and 

observed. 

 

The temperature-time dependence (TTD) of WVP was determined by fitting experimental 

data to Arrhenius and time-temperature superposition of William-landel-Ferry (WLF) 

models, whereas TTD of gas was obtained by fitting the data to Arrhenius equation.  

 

8.2.1.32 4.2.2.4 Film solubility (FSol) and swelling ratio (FStm) measurements 

 

The FSol and FStm measurements were conducted gravimetrically using an electronic balance 

(Sartorius, Cubis MSA, Germany) with a 0.1 mg resolution. Initially, a pre-weighed and 

laboratory fumehood-dried (1.0 % moisture content) films were immersed in 100 ml of water 

at 40oC, 75 % & 95 % RH). The wet film was removed from water after every 10 min until 

60 min, pre-dehydrated on filter paper and quickly weighed on the balance. The process of 

withdraw was maintained within 60 s to minimise any difference in weights of different film 

portions.  Seven (7) similar film portions were used, each withdrawn from water sequentially 

at an accumulated time, weighed and discarded. This was done to avoid interruptions of water 

diffusion and film swelling processes during transfers between water and electronic balance. 

The similar experiment was replicated with toluene and paraffin oil. Organic solvents are 

encountered in the supply chain of the materials, and their evaluation could provide an 

understanding of how IBC materials will behave when subjected to water in addition to 

organic solvents.  Triplicate measurements were considered for the purposes of 

reproducibility of the experimental results. The solvent weight gain was considered as weight 

loss (desorption) of solvent if the solvents were to lose what has been absorbed. Thus, a 
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weight loss-time plot was derived, and an instantaneous mass uptake was obtained by 

extrapolating the linear regression curve back to zero (M. J. Chen et al., 2015). The FSol and 

FStm were estimated as described in Chen et al., (2015) using Eqns. 4.5 and 4.6. 

 

FSKL =
'MN*'O

PO
                   4.5 

 

FSQR,% = '+S*'O
'O

100                 4.6 

 

where, FSol, water solubility in the film; Meq, total weight of wet film at equilibrium (eq); Md 

& Vd, film weight and volume; FStm & Mtm, saturation swelling ratio and total weight of wet 

film at a given immersion time (tm). The FStm, Vd and film density (Fd) were determined as 

described in Chen et al., (2015). It is noted that film Vd was 1, and thus Fd was equal to its 

solubility. The FSol and FStm experiments were conducted at 25oC. 

 

8.2.1.33 4.2.2.5 Statistics 

 

Data analysis was performed by Statistica 7.1 software (StatSoft Inc., Tulsa, USA) and 

Microsoft Excel, version 2013 to determine if RH and T has significant impacts on MB and 

GB, evaluate the goodness of fit of each model, the coefficient of determination and the mean 

relative percentage deviation modulus. Differences were considered to be significant when p 

≤ 0.05.   

 

4.3 Models and conceptual background 

 

The mass transport behaviour of fluids (moisture and gas) through polymeric films is 

preferably assessed by considering models that adequately fit the empirical data., e.g. rate of 

mass sorption (Ritger & Peppas, 1987), sorption-diffusion (Ochs, Lothenbach, Wanner, Sato, 

& Yui, 2001), film swelling and film-moisture interaction (Orwoll & Arnold, 2007), gas 

permeability, diffusivity and solubility (Fallis, 2013; Stannett, 1978), and temperature-

sorption-permeation (Arrhenius, 1874). All the above plus adsorption models (Table 4.1) are 

used to assess the mass transport behaviour in this study.   
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4.3.1 Analysis of film–solvent interaction  

 

Biobased films swell when they are exposed to solvents, and the degree of swelling is a 

function of the length of the network chain, temperature, type of solvent and strength of 

thermodynamic interaction between the film chains and solvent molecules (Marzocca, 2010). 

To assess the effect of SRRC and bitter cassava on the film molecular structure and possible 

modifications, which are pertinent factors that can influence barrier properties, the Flory-

Huggins equation (Eqn. 4.7) (Finch, 1983; Flory, 1953) was applied. The thermodynamic 

parameters evaluated here include film volume fraction (ϕf), solvent volume fraction, film-

solvent interaction ( ), and film mass between possible crosslinks (Mf). 

 

?
'T
= ∅TV ∅T

=VLW ?*∅T

�TPX ∅T
;
Y*;=∅T

                 4.7 

∅Z =
?

?V[                    4.8 

 

where, Mf, molecular weight between cross-links [reciprocal of moles of cross-linked units 

per unit film weight (g)]; ϕf, swollen film volume/total film volume; , film-solvent 

interaction parameter; ρf, film density; and Vs,  molar volume of solvent. Considering solvent 

soluble polymers (e.g. cassava film), q was further segregated into Eqn. 4.9. 

 

q = ]X
]T

                    4.9 

 

where, Ws, weight of solvent in film; and Wf, weight of film. 

 

Furthermore,  was calculated according to Bristow & Watson, (1958) Eqn. 4.10, and 

described in Barlkani & Hepburn, (1992). 

 

 = ^	 + _2
`a b8 − bc

d
                 4.10 
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where, β, lattice constant (0.34); Vs, solvent molar volume; R, universal gas constant; T, 

absolute temperature; δs & δf, solubility parameters of solvent and film respectively. The δf 

was derived by immersing film in water and quantifying the loss within 24 h, while δs were 

obtained from Burke, (1984). 

 

4.3.2 Film solvent permeation theory and mechanism 

 

For the gas flow, flowed through the film from outside of the test permeation chamber, 

whereas the diffusional movement of water vapour between the inner and outer surfaces was 

unidirectional, all across film thickness. Applying the assumptions: i) perpendicular 

diffusional flow; ii) insignificant pressure flux variation; iii) constant gas velocity; and iv) 

concentration gradient as driving force and constant diffusion coefficients, Ritger and Peppas 

empirical equation (4.11) (Ritger & Peppas, 1987) was used to express solvent transport 

behaviour in BC films. In addition, since the experiment was conducted in specific conditions 

of temperature and RH, isothermal conditions were assumed.   

 

M = ktW                             4.11 

 

where, M, mass of solvent sorption behaviour at a given time (t); k, kinetic constant, which is 

the mass sorption rate; and n, diffusional exponent (indicative of the solvent transport 

mechanism). For Fickian diffusion, n = 0.5, and non-Fickian diffusion, n > 0.5 (n = 1, case II 

diffusion & 0.5 < n < 1.0, anomalous diffusion) (Cheng et al., 2012), and this was determined 

from the total mass absorbed. According to Fickian and non-Fickian diffusional adsorption 

through a thin film (Eqn. 4.11), applies to only 60 % of the process, and this was used (in this 

study) to evaluate solvent diffusion in and out of the film in the permeation tests. 

 

Since the thickness-to-radius ratio of films used (0.002) was  < 0.2 (Crank, 1979), the neck-in 

(edge) effect (film thickness and width reduction) (Canning & Co, 2000) was neglected, and 

the one-dimensional diffusion of water vapour and O2 through the film was assumed for the 

permeation tests. Using the mass balances, the concentration-time (c-t) curves were 

developed and used in the description mass transfer patterns. 

 

 



Chapter 4 Impact of novel cassava processing on fluid transport phenomenon in biobased films 
 

112 
 
 

 

 

4.4 Film structural characterisation 

 

Thermal analysis of glass transition (Tg), melting (Tm) temperatures, crystallinity (CRY) and 

enthalpy change (∆H), was conducted using a differential scanning calorimeter (DSC 200 F3) 

equipped with a thermal analysis data station. A  hermetically sealed DSC pan with fresh 

derivative powder (10 mg), together with a reference empty pan were heated from 20 to 

250°C at a rate of 10°C/min, cooled back rapidly to 20°C and reheated at a rate of 5°C/min to 

250°C to give them thermal history. Tg, Tm, ΔH and C were calculated using the built in 

software and determined by considering the heat capacity change observed on the second 

heating.  

 

Structural changes and modification due to mass transport phenomenon of solvents in films 

were characterised by using Fourier transform infrared spectroscopy (FTIR). This procedure 

was derived from (Tumwesigye, Oliveira, et al., 2016). A film strip was placed in the sample 

holder. The spectra were recorded with an UV/Vis spectrum one FTIR spectrometer (Perkin 

Elmer Lambda 35, USA), frequency range of 4000–400 cm-1 and 4cm-1 resolution in the 

transmittance and absorbance modes for individual spectrum with 30 scans at room 

temperature. 

  

 4.5 Results and discussion 

 

4.5.1 Moisture barrier 

 

The moisture adsorption isotherms at 10, 20, 30⁰C for 10-90% RH are shown in Fig. 4.1. 

Accordingly, intact bitter cassava films (IBC) follow a Type II isotherm, regardless of the 

temperature in question, implying that these films possess wide pore size distributions 

leading to fluid pathways that are tortuous and highly variably (Fig 4.1a). Additionally, the 

equilibrium moisture content (EMC) increased corresponding to increases of RH at constant 

temperature, perhaps due to the exposure of these films to higher quantities of moisture. 

However, a relatively lower increase in EMC was observed when these films were exposed to 

higher temperatures, i.e. the EMC increased with decreasing temperature at constant RH.  
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Fig 4.1. Moisture barrier properties shown by adsorption isotherms (a) and ANOVA Pareto showing 

statistical differences and fit (b) 

 

Statistically, Fig 4.1b showed that temperature had more impact on film adsorption of 

moisture than RH. This phenomenon can be explained by the fact that at lower temperatures, 

films moisture affinity is high with higher capacity adsorption. It could be also due to the 

faster mobility of water molecules at higher temperatures causing a decrease in the 

intermolecular attractive forces. Chowdhury, Huda, Hossain, & Hassan, (2006) reported that, 

at higher temperatures, water molecules move to higher energy levels, become less stable and 

break away from the binding sites of the materials thus decreasing the monolayer moisture 

content. Similar temperature dependent adsorption isotherms trends in biobased materials 

were observed elsewhere (Chinma et al., 2013; Farahnaky, Ansari, & Majzoobi, 2009). 

Adsorption isotherms are often applied in industry to select suitable adsorbents during 

separation processes but also to select the best storage conditions of products in various 

environments. A number of models and the corresponding parameter adequacy to describe 

the above phenomena are presented in Table 4.1. As shown, Peleg, modified BET, Oswin and 

Forran-Fontan models best described the relationship between EMC and water activity at 
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each temperature (10, 20, 30oC) and under the conditions tested (10-90 % RH), with Peleg 

posting the most suitable model for IBC films. 

 

The moisture barrier property of materials is essential to approximation and prediction of the 

product-package shelf-life, with a precise package system barrier requirement governed by 

the product characteristics and the targeted applications. Moisture regulation in packaging 

can cause negative changes in product quality and shelf-life, and change package material 

characteristics.  

 

Table 4.1. Fitted Models, fitness evaluation parameters and constants for moisture adsorption 

of intact bitter Cassava films at three different temperatures.  

 

a 
Model name Equation Parameters at various temperatures, ᵒC 

 10 20 30 

Experimental   EMC, % 

d.b. 
11.74-67.67 4.32-54.83 4.32-54.83 

  MMC, 

% d.b. 
9.89-67.37 4.32-54.83 3.62-51.60 

Ferro-Fontan 

 

 

ɣ 74.07 14.98 14.26 

Ǭ 1.02 1.06 1.07 

ɾ 1.51 1.13 1.12 

Ṗ, % 5.99 5.84 9.12 

VR,% 1.71 1.10 0.86 

R² 0.98 0.99 1.00 

Predicted  MMC, 

% d.b. 
8.61-77.49 5.16-54.41 4.97-51.43 

GAB 

 

 

 

Mₒ, % 

d.b. 
7.74 5.94 5.64 

C 920.49 2467.95 2467.55 

K 2892.00 1359.37 1359.37 

Ṗ, % 24.53 17.51 23.47 

VR,% 42.15 11.05 11.72 

R² 0.90 0.96 0.96 

  MMC, 

% d.b. 
10.34-67.97 6.60-59.42 6.27-56.42 

Halsey 

 

 Mₒ, % 

d.b. 
3245.42 2327.45 2288.58 

A 0.43 1.33 1.26 
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n 1.64 1.39 1.39 

Ṗ, % 4.81 8.27 13.63 

VR,% 1.14 1.28 1.75 

R² 0.98 0.99 0.99 

  MMC, 

% d.b. 
5.04-62.26 6.01-55.42 5.73-52.63 

Henderson 

 

 

 

C 0.01 0.05 0.05 

n 1.23 0.96 0.96 

Ṗ, % 18.64 16.76 15.48 

VR,% 19.65 5.79 3.76 

R² 0.95 0.98 0.99 

  MMC, 

% d.b. 
9.90-67.44 2.07-53.24 2.00-50.46 

Modified 

BET 

 

 

 

MO 17.98 16.18 15.46 

C 10.38 2.73 2.66 

Ṗ, % 4.08 4.29 3.42 

VR,% 1.13 0.41 0.28 

R² 1.00 1.00 1.00 

  MMC, 

% d.b. 
7.98-65.59 3.81-54.55 3.57-51.95 

Oswin 

 

 

 

K 0.48 14.90 14.20 

 C 22.88 0.59 0.59 

 Ṗ, % 9.58 4.01 4.50 

 VR,% 5.03 0.73 0.38 

 R² 0.99 1.00 1.00 

  MMC, 

% d.b. 
10.92-67.49 4.10-54.12 3.92-51.42 

Peleg 

 

 

 

A 28.04 29.32 27.35 

B 0.41 0.91 0.92 

C 83.53 81.20 67.55 

D 6.84 10.05 8.78 

Ṗ, % 3.26 5.58 3.13 

VR,% 0.59 0.53 0.12 

R² 1.00 1.00 1.00 

  MMC, 

% d.b. 
7.68-63.63 3.57-54.78 3.30-51.62 

Smith 

 

 

 

A 5.00 0.52 0.31 

B -25.46 -21.83 -20.91 

Ṗ, % 13.28 12.65 11.59 

VR,% 10.36 5.82 3.88 

R² 0.97 0.98 0.99 
Arrhenius  

7	 = 	7/ghi
j	kH
lm  aw 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
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  Ep x 104 4.31 30.39 2.30 1.80 1.44 1.25 1.19 1.14 1.00 

  Po 103 3.21 0.91 8.03e-4 0.05 8.22 0.12 0.32 1.11 

  R2 0.92 0.93 0.95 0.97 0.98 0.98 0.94 0.92 0.99 

P, mean relative deviation modulus, VR, standard error of estimate,  R², coefficient of determination, EMC, 

equilibrium moisture content, MMC, modelled moisture content, Mₒ, monolayer moisture content, d.b., dry basis 

and A, B, C, D, F, G, H, ɣ, Ǭ, ɾ, K, n, models’ coefficients 
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b 
Model 

 

Parameters Water activity, aw 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Ferro-Fontan Ea, J mol−1 -24748.1 -22053.4 -19954.8 -18073.3 -16267.3 25546.33 25546.75 29052.56 -9683.08 

 A, s-1  0.000243 0.000978 0.002907 0.007782 0.020224 1657797 1657797 5395091 1.073796 

 S, J K−1 mol−1 -1.00082 -0.83352 -0.70247 -0.58404 -0.46917 1.722411 1.722411 1.864331 0.008563 

 R2 0.81 0.81 0.81 0.82 0.82 0.83 0.98 0.99 0.91 

Modified BET Ea, J mol−1 -36726 -28043.2 -22711.1 -19040.2 -16317.2 -14179.6 -12412.7 -10865.4 -9368.79 

 A, s-1  1.44E-06 8.48E-05 0.00101 0.005664 0.02102 0.06152 0.159024 0.403734 1.227157 

 S, J K−1 mol−1 -1.61801 -1.1276 -0.82961 -0.62224 -0.46453 -0.33537 -0.22114 -0.10909 0.02462 

 R2 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.9 

Oswin Ea, J mol−1 -25573.8 -22465.8 -20399.7 -18706 -17152 -15597.2 -13903.5 -11837.4 -8729.4 

 A, s-1  0.000138 0.000774 0.002433 0.006223 0.014732 0.034874 0.089198 0.280467 1.571766 

 S, J K−1 mol−1 -1.06894 -0.86165 -0.72387 -0.61092 -0.50727 -0.40363 -0.29068 -0.1529 0.054387 

 R2 0.81 0.82 0.83 0.83 0.84 0.85 0.86 0.87 0.91 

Peleg Ea, J mol−1 -43106.6 -30388.7 -22983.8 -17893.7 -14414 -12472.6 -11859.8 -11462.4 -9609.91 

 A, s-1  1.03E-07 3.21E-05 0.000911 8.03E-29 0.045831 8.222711 0.195853 0.321294 1.111044 

 S, J K−1 mol−1 -1.93505 -1.24445 -0.84202 -7.7806 -0.37077 0.2534 -0.19609 -0.13656 0.012665 

 R2 0.82 0.83 0.85 0.87 0.88 0.88 0.84 0.82 0.92 

Ea, Activation energy, A, Pre-exponential factor and S, entropy 
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The temperature dependence of WVP is presented in Fig. 4.2, showing increases in RH 

and temperature increased the IBC film permeance to moisture (Fig. 4.2a), statistically 

demonstrating that high significant (p ≤ 0.05) impact followed the order of RH, 

temperature and RH-temperature interaction (Fig 4.2b). As expected, the phenomenon 

is associated with molecular activation, causing film segment movement with formation 

of cavities that often facilitate movement of solvents through porous films (Weinkauf & 

Paul, 1990).  

 
Fig 4.2 Temperature dependence of water vapour permeability, showing exponential increases 

with RH (a) and statistical differences and fit (b) 

 

The temperature-dependence phenomenon is normally presented by an Arrhenius type 

association (Arrhenius, 1874). In this study, the combined Arrhenius and William-

landel-Ferry model was used to predict behaviour of moisture permeation of IBC films 

(Fig 4.3 & Table 4.2).  
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Fig 4.3 Permeability effect on film moisture barrier properties as influenced by a) temperature, 

b) temperature-time dependence of WVP as predicted by Arrhenius and William-

landel-Ferry (WLF) models, and c & d) corresponding fit efficiency 

 

A rise in temperature resulted in increases in permeation for all RH tested (Table 4.2a, 

b, c), which is also well-illustrated in Arrhenius-WLF model graphs  by the linearity of 

the plots and best fits (Fig 4.3a, b, c, d). The linearity confirms that water uptake is 

regulated by the diffusion process (Sultana & Khan, 2013). It has been reported that 

WLF model allows for estimation of temperature shift factors by extrapolation, thereby 

being able to predict the lifespan of products (Sullivan, 1990). A decrease in activation 

energy (Ep) of permeation and an increase in pre-exponential factor (Po), proved a usual 

pattern of global  (Arrhenius-type) model- dependency of temperature, and an activation 

energy independent of RH, with a pre-exponential factor varying exponentially (Table 

4.2a). The relatively low Ep at all RH (Table 4.2a) compared to wheat gluten coating of 

14.20 Kcal/mol (59.41 KJ/mol) (M. N. Kumar & Yaakob, 2011), low density 

polyethylene and oriented polypropylene of 21.23 KJ/mol and 21.39 KJ/mol (Kulchan, 

Boonsupthip, & Suppakul, 2010), implies that IBC films can be performed in 

applications that require relatively higher temperatures. This is interestingly good for 

IBC films, and shows the advantage of SRRC over other conventional processing 
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methods. Together with Arrhenius-WLF model, the shelf-life of materials with 

temperatures close to and above their glass transition (Tg) can be estimated. In this 

study, films with Tg around 40⁰C (Fig. 4.3a), corresponding to WVP test temperatures 

of 40⁰C, were produced from intact bitter cassava, suggesting that the above models are 

applicable to IBC films.  

 

Table 4.2.  Permeability and parameters of Arrhenius (a), WLF model fit (b), and 

joint (c) model fits  

a 
  

Expt WVP 

 

Model WVP 

 

 
T, 
⁰C 

 
p(av) 

75 

 
p(av) 

85 

 
p(av) 

95 

 
p 75 
mod 

 
p 85 
mod 

 
p 95 
mod 

 
 

stdev 

 
Eₐ 

(kJmol¯¹) 

 
 

A 

 
 

R² 
 

10 
 

0.51 
 

0.78 
 

1.14 
 

0.48 
 

0.74 
 

1.16 
 

0.1 
 

11.9 
 

244.6 
 

0.99 
20 0.51 0.95 1.45 0.60 0.93 1.45 0.1    
30 0.70 1.09 1.83 0.74 1.14 1.78 0.1 14.4 981.5 0.97 
40 0.99 1.39 2.13 0.90 1.39 2.16 0.3 24.5 104088.8 0.99 
 
b 

  
Expt WVP 

 
Model WVP 

 

 
T, ⁰C 

 
p(av) 75 

 
p(av) 85 

 
p(av) 95 

 
p 75 mod 

 
p 85 mod 

 
p 95 mod 

 
sq.res 

 
10 

 
0.51 

 
0.78 

 
1.14 

 
0.51 

 
0.83 

 
1.28 

 
0.022 

20 0.51 0.95 1.45 0.48 0.83 1.45 0.017 
30 0.70 1.09 1.83 0.69 1.12 1.70 0.017 
40 0.99 1.39 2.13 0.98 1.53 2.07 0.025 

 
c 
 Expt WVP Model WVP    

T, 
⁰C 

p(av) 
75 

p(av) 
85 

p(av) 
95 

75 
Arh 

85 
Arh 

95 
Arh 

75 
WLF 

85  
WLF 

95    
WLF 

          
10 0.51 0.78 1.14 0.48 0.74 1.16 0.51 0.83 1.28 
20 0.51 0.95 1.45 0.60 0.93 1.45 0.48 0.83 1.45 
30 0.70 1.09 1.83 0.74 1.14 1.78 0.69 1.12 1.70 
40 0.99 1.39 2.13 0.90 1.39 2.16 0.98 1.53 2.07 
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4.5.2 Permeation to oxygen 

 

The purpose of measuring oxygen transport through IBC films at three different 

temperatures and RH was meant to simulate their effect under supply chain conditions. 

The effect of temperature and RH on the permeability to oxygen (PO2) is illustrated in 

Fig 4.4, showing that temperature had a highly significant (p ≤ 0.05) positive impact, 

whereas RH had highly negative impact on PO2. At any given temperature, an increase 

in RH caused a slight decrease in the permeation of the two gases, suggesting that 

moisture could be involved in antagonising diffusion perhaps due to reductions in the 

size of voids.  In a purposive pre-test trial (PPT) with micro-perforated biobased films, 

to determine package performance, it was apparent that increase in RH reduced gas 

permeation. Although the effect was not so much pronounced with the type of film 

used, this could pose challenges to the development of biobased films, particularly for 

those destined for edible packaging. The PPTs are sometimes carried out in vitro to 

gauge the direction of an experiment/study. 

 

 

 
Fig 4.4. Effect of temperature and RH on the permeability to oxygen  

 

Table 4.3 shows the temperature-dependence permeability coefficients (PC) of oxygen 

(O2) at 75 and 95 % RH in IBC films. In the 10-40 oC, films stored at 95 % RH 

exhibited highest O2 permeation compared to those kept at 75 % RH, while their pre-
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exponential factors and activation energies were in the order of the PC: 75 % RH > 95 

% RH. However, increase in temperature resulted in a decrease of oxygen (O2) at 75 

and 95 % RH. Furthermore, as the temperature increased in the lower RH (75 %), IBC 

glass transition temperature (Tg) and crystallinity (CRY) increased. By contrast, the 

increase in temperature at higher RH (95 %) caused a decrease in Tg, with Cry 

associated with temperature and RH increases. 

 

Table 4.3  Permeation of oxygen in relation to thermal properties of intact bitter 

cassava films 

Gas T, 

⁰C 

RH, 

% 

Thermal 

properties 

P, cm3 cm / 

(cm2.s.cmHg) 

At; RH, 

⁰C, % 

Pef, cm3 cm / 

(cm2.s.cmHg) 

Ep, 

Kj/mol 

Tg Cry, % 

O2 10 75 38.7 52.28 7.66 x 10-5 10–40;  

75 

1470.00 x107 32.79 

 40 75 40.2 60.63 2.016 x 10-5    

 10 95 38.00 30.72 23.6 x 10-5 10–40;  

95 

2.52 x107 20.45 

 40 95 36.7 55.45 10.266 x 10-5    

 

 

According to Table 4.3, the PO2 obeyed Arrhenius rule as temperature increased from 

10⁰C to 40⁰C regardless of RH. The observed change of PO2 at Tg suggest that PO2 is 

influenced by a change in chain mobility. The PO2 seems to be significantly influenced 

by RH, with reductions in permeation (Table 4.3). This supports the explanation 

provided earlier on the influence of moisture on the shape and perhaps size of voids in 

IBC films. Additionally, it is observed that the increase in PO2 at high RH is 

independent of increase in moisture. Generally, the information provided is important 

particularly for the choice of deploying IBC films in commercial applications in which 

most polymer materials are applied below or above transition conditions (Komatsuka & 

Nagai, 2009). Since IBC temperature dependence of PO2 was not influenced by CRY at 

high RH is a good signal that IBC materials can be blended with other commercial 

polymers such polylactic acid (PLA) to deliver good quality materials under moisture-
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stressed environments. The temperature dependence of gas permeability of PLA has 

been reportedly not affected by transition conditions (Komatsuka & Nagai, 2009).  

 

4.5.3  Mass transport characteristics of solvents through intact bitter cassava 

(IBC) films 

 

The pattern of solvent diffusion through IBC films is shown in Fig 4.5. It can be clearly 

noted that there was lower moisture absorption at 75 % RH than 95 % RH (Fig 4.5a); 

and similar differences were also apparent for toluene (Fig 4.5b) and paraffin oil (Fig 

4.5c) diffusions in the IBC films at 30⁰C, 50 % RH. The sigmoid nature of toluene and 

paraffin oil profiles might be due to the dilution effect (Cheng et al., 2012) and, perhaps, 

minimal interaction and effect of these solvents on IBC films. This is also supported by 

their low mass uptake as compared to moisture at 75 % RH and 95 % RH (Table 4.4). 

The patterns of toluene and paraffin oil are similar to those that have been reported for 

these solvents through polymer gloves (Chen et al., 2015), implying that the latter and 

IBC films behave similarly. However, as compared to polymer gloves, the diffusion of 

toluene and paraffin oil through IBC films is faster.  

 

Table 4.4. Film transport properties in different solvents at 30⁰C, for IBC (a) and 

comparison of IBC film-solvent interaction with polymer glove’s rubber-toluene 

interaction.  

a 
Solvents Inst. Mass 

uptake  

Desorption 

rate, mg/min 

FSol, 

mg/ml 

 

FStm R2 n 

Water 75, mg 0.2228 0.0047 0.4713 1.0765 0.90 1.002 

Water 95, mg 2.5640 0.0272 3.9752 10.6156 0.81 0.997 

*Toluene, µg 1.4832 0.3139 0.0390 0.0046 0.90 0.339 

**Paraffin oil, µg 0.0032 0.0005 0.0813 0.0757 0.95 0.536 

n, kinetic exponent associated with solvent transport characteristics; 75 & 95, water 

activities (0.75 & 0.95); stars (* & **), values measure in micrograms (µg).   
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b 
Material χ Reference 

 

IBC film -75RH 0.357 This study 

IBC film - 95RH 0.369 This study 

IBC film-Toluene 3.670 This study 

IBC film-paraffin oil 0.342 This study 

Butyl rubber-Toluene 0.540 (M. J. Chen et al., 2015) 

Nitrile rubber-Toluene 0.690 (M. J. Chen et al., 2015) 

 

 

 
Fig 4.5  Comparison of the effect of solvents on swelling of IBC films. Water at 75 and 95 % 

RH (a), toluene (b) and paraffin oil (c) 
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The desorption rate patterns could be explained on the account of the viscous nature of 

the solvents. Although viscosity was not determined in this study during the experiment, 

paraffin oil showed high stickiness and low flow compared to toluene. In 

macromolecular network systems, fluid transport mechanisms through polymers are 

often described by diffusional kinetic exponents, which also describes Fickian and non-

Fickian diffusional release from thin films (Ritger & Peppas, 1987). Thus, the water at 

75 % RH and 95 % RH through IBC films followed case II non-Fickian compared to 

Fickian diffusion exhibited by toluene and paraffin oil when diffused through the film 

(Table 4.4a). The Fickian diffusion nature of IBC films is in agreement with what was 

observed with toluene penetration of rubbery polymers (Chen et al., 2015; Miller-Chou 

& Koenig, 2003).  

 

Furthermore, the lower interaction factor of IBC films with water at 75 % RH and 95 % 

RH, and paraffin oil imply that these two solvents cause less swelling compared to 

toluene (Table 4.4b). In comparison with butyl and nitrile rubbers, toluene causes more 

swelling to IBC films than to the former.   

 

The profiles of mass transfer of solvents are illustrated in Fig 4.6, showing that the 

adsorption and diffusion of water at 75 % RH and 95 % RH through the film is initially 

governed by case II non-Fickian diffusion (RP model) in the first 80 % (Fig 4.6a) and 

75 % (Fig 4.6b) of adsorption. Conversely, the mass transfer behaviour of toluene (Fig 

4.6c) and paraffin oil (Fig 4.6d) exhibited Fickian diffusion.        
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Fig 4.6  Typical concentration-time curves for water at 75 % RH (a), 95 % RH (b), toluene (c) 

and paraffin oil (c) transfer in IBC films showing profiles of rate of transfer (Exptal) 

and those modelled by power equation (RP) illustrating the type of diffusion (Fickian or 

non-Fickian) 

 

These results imply that IBC films behave like glassy polymer under high moisture 

stress reflecting generally low cohesion and disorderly hole structures characteristic of 

case II diffusional deformation as result of structural swelling (Masaro & Zhu, 1999). 

The observed case II diffusion might also be due to thin membrane exhibited by the IBC 

films. The heterogeneity in these films confirm some level of modification imparted by 

SRRC. It has been reported that most commercial polymers are heterogeneous in nature 

(Cheng et al., 2012). By contrast, the diffusion of toluene and paraffin oil did not cause 

any deformation to IBC films. This is a good indication of the potential of these films to 
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be used in commercial products in contact with a range of organic solvents, e.g. oils, but 

with restricted water contact, such as dry products.   

 

4.5.4 Impact of solvent mass transfer on film structural changes 

 

An understanding of the association between solvent absorption and structural changes 

and modification of the film matrix is essential in order to ensure safe handling in the 

distribution chain. Structural changes is one of the approaches to assess the impact of 

permeants into the film material. As shown in Table 4.5, the broader transition from the 

glassy to the rubbery region caused by the 10oC- 75 % RH solvent characterises IBC 

films having a wider distribution of crosslinking density and lower homogeneity of 

these networks (Petrovic, 2008). The films penetrated with 40oC- 95 %RH and 10oC- 95 

% RH showed a slight decrease in glass transition, which might be attributed to higher 

solvent concentration (Table 4.4) due to increased plasticisation and more flexibility. In 

this study, it was observed that Toluene permeation caused films to become more 

brittle, consistent with low solubility and low swelling (Table 4.4) and higher Tg and 

Tm (Table 4.5).  

 

 

Table 4.5 Effect of solvents diffusion on thermal properties of IBC films 

Solvents  Tg, 0C Tm, 0C CRY, % Enthalpy change, 

J/(gK) 

100C-75% RH 38.7 (36.3-41.2) 200.5 52.3 0.121 

100C-95% RH 38.0 (37.5-38.6) 197.9 30.72 0.003 

400C-75% RH 40.2 (40.0-40.1) 179.0  60.63  0.006 

400C-95% RH 36.7 (36.8-38.8) 197.2  55.45  0.074 

Toluene 56.8 (55.1-56.2 203.3 40.72 0.007 

Paraffin oil 36.6 (36.5-36.7) 164.8 79.21 0.003 

 

 

Fourier transform infrared spectroscopy (FTIR) thermograms of film-solvent interaction 

during the transfer process are presented in Fig. 4.7.  
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The O-H stretches around 3000 cm-1 in Fig 4.7a and 4.7b, shown by broad bands, imply 

that moisture was involved in film-water interaction. However, it could also imply that 

glycerol was also involved. In this study glycerol was used to obtain solutions of 

relative humidity of 75 and 95 %RH. Furthermore, the C-H stretch peaks high than 

3000 cm-1  in Fig 4.7c and 4.7d point to the presence of organic solvents, and thus 

involvement of toluene and paraffin oil interactions. 

 
 
Fig 4.7 Effect of solvent diffusion on chemical properties of IBC films illustrated by FTIR thermograms 

of water at 75 % RH (a), water at 95 % RH (b), toluene (c) and paraffin oil (d). 
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Conclusion 

 

The transport phenomenon of fluids and solvents in humidity- temperature-stressed 

intact bitter cassava films has been assessed by qualitative and mechanistic techniques, 

and related to the structural characteristics of interactions.  

The intact bitter cassava (IBC) films follow a Type II isotherms, with wide pore size 

distributions leading to fluid pathways that are tortuous and highly variable. This 

suggests that these films might have wide variable permeability to fluids, which can be 

explored for packaging a broad spectrum of products. However, it also shows that care 

need to be taken to avoid exposure to high humidity.  

Peleg, modified BET, Oswin and Forran-Fontan models best described the relationship 

between equilibrium moisture content and water activity at each temperature and under 

the conditions tested. Thus, these models could be used as promising tools, to describe 

sorption behaviour of future developed IBC films.  

Temperature and humidity have shown to increase, exponentially, water vapour and 

oxygen permeation through IBC films. This was in agreement with temperature 

dependence of Arrhenius concept. Thus, validation of developed films in conditions for 

their targeted use should be taken as a priority during biobased film package 

development including IBC films. 

The mass transfer mechanism of solvents through IBC films was found to vary widely 

with the time of solvent, with water at 75 RH and 95% RH obeying case II non-Fickian 

and toluene and paraffin oil following Fickian diffusion. It can be concluded that, like 

any other packaging films on the commercial markets, mass transfer in IBC films is 

governed by evaporation, diffusion, material solubility and interactions. 

The DSC and FTIR tests disclosed that solvents induce structural changes in IBC films, 

which is solvent type-dependent. These results suggest that thermal and structural tests 

should be initiated along with tests of developed biobased materials during validation 

experiments. 

In a nutshell, the integrity of the cassava biobased film packages will depend on the host 

environment, and maximum care should be ensured to minimise environment effects in 

the distribution chain. 
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Chapter 5. Novel intact bitter cassava: Sustainable development and desirability 

   optimisation of packaging films 

 

Abstract 

Novel biomaterials and optimal processing conditions are fundamental in low-cost 

packaging material production. Recently, a novel biobased intact bitter cassava 

derivative was developed using an intrinsic, high-throughput downstream processing 

methodology (simultaneous release recovery cyanogenesis). Processing of intact bitter 

cassava can minimise waste, and produce low-cost added value biopolymer packaging 

films. The objective of this study was to i) develop and characterise intact bitter cassava 

biobased films, and ii) determine the optimal processing conditions, which define the 

most desirable film properties. 

Films were developed following a Box-Behnken-design considering cassava (2, 3, 4 

%w/v), glycerol (20, 30, 40 %w/w), and drying temperature (30, 40, 50°C) and 

optimised using multi-response desirability. Processing conditions produced films with 

highly significant (p<0.05) differences. Developed models predicted impact of 

processing conditions on film properties.  Desirable film properties for food packaging 

were produced using the optimised processing conditions, 2 %w/v cassava, 40.0 %w/w 

glycerol, and 50°C drying temperature. These processing conditions produced films 

with 0.3%; transparency, 3.4%; solubility, 21.8%; water-vapour-permeability, 4.2 

gmm.M-2.day-1kPa-1; glass transition, 56°C; melting temperature, 212.6°C; tensile 

strength, 16.3 MPa; elongation, 133.3%; elastic modulus, 5.1 MPa; puncture resistance, 

57.9 J, which are adequate for packaging applications. Therefore, intact bitter cassava is 

a viable material to produce packaging films that can be tailored for specific sustainable, 

low-cost applications. 

 

Key words: Bitter cassava, biobased film, sustainability, optimization desirability. 
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5.1 Introduction 

 

Natural bioresources have drawn packaging research interest due to rising 

environmental sustainability awareness and demand for economic food packages. This 

demand is due to growing negative impact of the fossil-based non-biodegradable plastic 

packaging materials on the environment (Souza, Monte, & Pinto, 2011) and perhaps 

concerns of escalating costs of package production. Among the natural materials, sweet 

cassava has been progressively used in film formulations due to abundance, 

biodegradability and low-cost of its polysaccharide derivatives, but this makes it 

unsustainable due to competition with food supply. Its derived polysaccharide starch is 

by far evaluated as a main component in the formulation of biobased films (Flores, 

Costa, Yamashita, Gerschenson, & Grossmann, 2010; Maran, Sivakumar, Sridhar, & 

Thirugnanasambandham, 2013; Phan The, Debeaufort, Voilley, & Luu, 2009; Souza et 

al., 2012). Biobased packaging films have been reported to maintain quality and 

improve shelf-life of fresh and processed foods especially when they exhibit good 

mechanical properties and selective barriers (Cerqueira et al., 2010). Sweet cassava has 

been successful in the development of biobased films with wide range of properties 

(Embuscado & Huber, 2009), but these films have not been used in many food packages 

possibly due to lack of standardisation and systematic approach. Bitter cassava 

cultivars, regarded traditionally as a famine-reserve crop (Burns, Gleadow, Cliff, 

Zacarias, & Cavagnaro, 2010; Chiwona-Karltun et al., 1998; Essers, 1988; Sayre et al., 

2011; Thi & Vuong, 2012), are being transformed into resourceful commercial crops 

but many issues regarding their full value as industrial materials are yet to be resolved. 

Recently, a novel biobased intact bitter cassava derivative was developed using an 

intrinsic, high-throughput downstream processing methodology known as simultaneous 

release recovery cyanogenesis (SRRC) (Tumwesigye et al., 2016). 

 

Novel materials and optimal processing conditions are fundamental in low-cost 

packaging material production.  

Optimisation of formulations is dependent of material balance and processing 

conditions. Optimisation of formulations has been accomplished mainly for various 

compositional blends of starch/flour of any botanical crop, other additives and different 
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plasticisers. Examples that have been reported include optimisation of amaranth 

flour/glycerol matrix (Tapia-Blácido, do Amaral Sobral, & Menegalli, 2011), 

optimisation of starch/polyester film properties (Olivato et al., 2013), optimisation of 

xanthan gum/tapioca starch/ potassium sorbate edible matrices (Arismendi et al., 2013). 

Few studies have used banana flour to determine the optimal processing conditions of 

films (Franciele Maria Pelissari, Andrade-Mahecha, Sobral, & Menegalli, 2013). These 

studies allude to the fact that better films can be produced when initial material 

additives and plasticisers are balanced. Optimisation of a good film requires precise 

control of the processing conditions and careful examinations of the fluctuations that 

occur in film properties. However, no systematic optimisation study, integrating 

biobased film production by combining material balance, processing conditions and 

low-cost processing has been performed for intact bitter cassava. Nowadays, 

experimental design methodology tools have been employed to determine the most 

efficient and economic matrix formulations needed for optimal formulations (Steele et 

al., 2012). Robust packaging design provides approaches for fine-tuning processing 

conditions to the desired possible package properties with marginal costs and maximum 

functional presentation. For each property-condition match, there is need to tailor the 

formulation that best suites a specific product. Desirable properties could be achieved 

by process robustness incorporating low-cost base materials and formulations. 

Unfortunately, the common current approach is characterised by piecemeal evaluations 

whereby there is a tendency to improve the properties of films by evaluating parameters 

on individual basis.  

 

The objective of this study was to i) develop and characterise intact bitter cassava 

biobased films, ii) define the parameters and conditions, which relate formulation to 

film development properties, and iii) optimise processing conditions and properties in 

order to obtain films with desirable characteristics for tailor food packaging. 

 

5.2 Methodology 

5.2.1 Material source: Intact bitter cassava 
  

Intact (whole) bitter cassava (Tongolo), with total cyanogen content between 900 and 

2000 ppm, were processed using an intrinsic extraction procedure known as 
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simultaneous release recovery cyanogenesis (SRRC) into biopolymer derivative with a 

total cyanogen around 0.5 ppm according to the method described by Tumwesigye et 

al., (2016). The biobased intact bitter cassava derivative was used for film formulation.  

 

5.2.2 Development of intact bitter cassava films 

 

The development and production of semi-commercial intact bitter cassava biobased 

films was performed based on Box-Behnken design. The design matrix for both 

processing conditions (actual/coded independent variables) and responses (film 

properties), with a total of 15 experimental runs are presented in Table 5.1. Each run 

was an average of 3 replicates. The criteria for selection of processing conditions that 

have a significant impact on the film development was set considering previously 

reported range values of cassava starch/flour and their reinforced films (de Moraes et 

al., 2013; Tumwesigye et al., 2016).  

 

Biobased intact bitter cassava derivative (2, 3, 4 % w/v) and glycerol (20, 30, 40 % 

w/w) were mixed in 100 mL deionized water, and homogenised using a magnetic stirrer 

(100 rpm, 20°C, 5 min). The mixture was transferred to a bath (Huber Ministat 240 

Heating Recirculating Unit, UK) and heated (70°C, 2°C/min., during 5 min) until a 

viscous transparent gel was observed, and held for 20 minutes.  

 

Film casting was done by pouring solution (30 mL) onto a previously lubricant sprayed 

14 cm diameter flat glass plate using a dropper. The film solution was measured to 

ensure production of uniform thickness films (30±5 µm) for different samples, and the 

dry film release spray (Ambersil Formula 5 non-silicone, UK) was used to ease peeling 

of films after drying. The plate was left at 25±1°C for 3 hours to allow stabilisation and 

bleeding of trapped bubbles, and then dried in a ventilated oven (30, 40, and 50) ±1°C 

for 4-8 h. The dried film was peeled off the plate and equilibrated at 23±2ᴼC, 54 % 

relative humidity for at least 48 h prior to experimental analysis.  

 

 

5.2.3 Characterisation of intact bitter cassava films 
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5.2.3.1 Thickness measurement 

 

For each experiment (Table 1), film thickness (mm) was measured using an absolute 

digital Calliper (Digmatic, Mitutoyo UK Ltd). Measurements were taken at 6 different 

random sites and the average values were calculated for film surface area that was 

intended only for use in each test.  The purpose of measurement was to ensure that 

films’ thickness was maintained within the same range during characterisation.  
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Table 5.1.  Box-Behnken design matrix: Actual/coded variables of processing conditions and film properties.  
Runs Actual/ coded independent 

variables 
 Film properties 

Cassava            
% w/v 

Glycerol            
% w/w 

Temp  
ᴼC 

 Moisture 
content % 

Optical (%) Solubility        
(%) 

Water Vapour 
Permeability     

gmm / (m².day.kPa 

Glass 
transition 

ᴼC 

Melting 
temperature 

ᴼC 

Tensile 
Strength 

MPa 

Elongation 
at break 

 % 

Elastic 
modulus 

MPa 

Puncture 
resistance     

J 
1 4 (1) 30  (0) 30 (-1)  0.6±a0.0 8.4a±0.2 19.6a±0.1 6.5a±0.0 44.4ab±0.0 190.7a±1.2 23.0a±0.1 45.1a±0.5 9.4a±0.0 56.3a±0.5 
2 2 (-1) 30  (0) 30 (-1)  0.2±b0.0 10.0b±0.0 17.1b±0.5 5.2b±0.0 41.7cd±0.1 203.8b±1.0 20.0ba±0.

4 
5.2b±0.4 5.7b±0.0 2.1b±0.0 

3 3  (0) 20 (-1) 30 (-1)  0.2±c0.0 7.1±c0.1 18.3c±0.0 4.1c±0.0 42.9d±0.0 188.0ca±1.0 21.2ba±1.
7 

3.0b±0.5 10.6c±0.0 2.5b±0.5 

4 3  (0) 40 (1) 30 (-1)  0.7±d0.0 10.9d±0.1 23.1d±0.4 7.7d±0.1 39.7aec±0.1 185.0gc±1.0 4.7cd±1.1 74.6c±13.4 0.7d±0.0 63.9c±0.8 
5 2 (-1) 20 (-1) 40  (0)  0.2±e0.0 5.6±e0.2 18.1e±0.3 3.4e±0.0 49.5fg±0.1 202.7db±2.1 11.1e±0.7 2.8b±0.6 5.9b±0.0 1.7b±0.1 
6 4 (1) 20 (-1) 40  (0)  0.2±f0.0 9.9±f0.2 21.9f±0.4 4.4f±0.0 50.7gh±0.1 196.7e±1.2 37.6f±3.0 4.1b±0.8 9.7e±0.0 29.0d±1.5 
7 2 (-1) 40 (1) 40  (0)  0.3±g0.0 3.5±g0.5 20.1g±0.3 4.8g±0.0 46.8gi±0.0 208.0f±0.0 1.9c±0.1 189.3d±9.5 0.1f±0.0 51.6e±0.1 
8 4 (1) 40 (1) 40  (0)  0.5±h0.0 5.3±h0.5 30.5h±0.1 4.5h±0.0 44.1ab±0.1 191.5a±1.5 3.7c±0.1 181.3d±14.3 0.1f±0.0 73.2f±0.7 

9 4 (1) 30  (0) 50 (1)  0.3±i0.0 3.6±i0.4 36.4i±0.1 3.5i±0.0 54.3e±0.0 186.7g±1.5 39.8gb±0.
2 

43.9b±0.4 14.2g±0.0 37.0bg±0.7 

10 2 (-1) 30  (0) 50 (1)  0.2±j0.0 5.6±j0.2 33.2j±0.2 6.4j±0.0 46.1b±0.1 208.3gc±1.2 16.4eh±0
.4 

4.5b±0.3 7.6h±0.0 2.7g±0.1 

11 3  (0) 20 (-1) 50 (1)  0.2±k0.0 3.7±k0.1 40.9k±0.4 4.6k±0.0 51.7e±0.1 199.7gc±0.0 33.6e±1.0 6.4b±0.2 13.8i±0.1 2.6bg±0.3 
12 3  (0) 40 (1) 50 (1)  0.5±l0.0 7.0±l0.4 39.1l±0.2 4.9l±0.0 47.6j±0.1 199.0gc±1.5 7.5f±0.2 33.1a±0.6 1.5j±0.0 52.5h±0.3 
13 3  (0) 30  (0) 40  (0)  0.5±m0.0 4.7±m0.4 36.1m±0.2 3.4m±0.0 38.3bi±1.9 183.7f±1.5 17.8hg±1.

9 
4.2a±0.8 5.2k±0.2 3.5bg±0.3 

14 3  (0) 30  (0) 40  (0)  0.5±n0.0 4.1±n0.1 36.2n±0.3 5.4n±0.0 37.9h±1.6 185.3ed±0.6 13.7i±1.1 4.2b±0.0 4.4l±0.0 4.5bg±0.6 
15 3  (0) 30  (0) 40  (0)  0.5±p0.0 4.2p±0.1 35.7p±0.2 5.4p±0.0 39.0fi±0.6 186.0e±1.0 12.6d±0.7 14.4a±3.7 7.1m±0.0 3.3e±0.1 

Marked differences (subscripts) are significant at p < 0 .05 
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5.2.3.2 Moisture content 

 

Film moisture determination was performed in two stages: i) initial weight loss (WL) and ii) 

moisture content (MC). The initial WL allowed films to lose free moisture and transformed 

them into films which could be subsequently applied. Herewith, 15 films (8.4 cm diameter 

each), formulated according to the experimental design (Table 5.1), were dried at three 

different temperatures (30, 40, 50°C) and their WL monitored every 30 minutes until constant 

readings were obtained. These films were designated WLF. To evaluate the effect of 

processing conditions on the MC, triplicate samples from each batch of freshly dried WLF 

was determined gravimetrically. WLF was dried in a hot air circulation oven at 105°C for 9 

hours until when the WLFs had constant weights. MC was calculated as the ratio of the mass 

of water lost to the total WLF weight and expressed in percentage, wet basis. Three replicates 

of each WLF were tested.  

 

5.2.3.3 Optical properties 

 

Film optical property (transparency level) was determined as described (Mu et al., 2012) with 

slight changes. Film strip of each formulation was carefully inserted into cuvettes and placed 

inside a spectrophotometer cell. Spectrum intensity of an empty cuvette (I₀) (as a baseline) 

was run concurrently with the sample film. Transmission was measured using a 

spectrophotometer (Biochrom Libra S22 UV/Vis, Cambridge CB4 0FJ UK) at wavelength 

700 nm. Transparency (T %) was calculated using Eqn. 5.1. For each of the values, the higher 

T implies that less light passed through a film, thus described as opaque. Three replicates of 

each film were tested. 

 

"	 = log ()/ (+ 100                         5.1 

 

where, t, film thickness (mm). 
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5.2.3.4 Solubility  

 

Film solubility (FS) in water was measured as described in Belibi et al., (2014) with minimal 

modifications. Previously oven-dried film strips (3 x 2 cm) were weighed on an aluminium 

foil, submerged in a beaker with 50 mL of distilled water and tightly covered with parafilm to 

minimise water loss and airborne contaminants. The contents were kept at 23°C for 30 days, 

intermittently agitated every 24 h to allow dissolution, partially dehydrated (where necessary 

filtered) on filter paper and dried in an air-circulating oven at 70°C until constant weight. 

Total soluble matter of the sample was calculated as described (Belibi et al., 2014). Sample 

tests were performed in triplicate, and mean values were used for computing FS in water. 

 

5.2.3.5 Water vapour permeability  

 

Film water vapour permeability (WVP) was determined gravimetrically at 38°C, 95% RH 

according to ASTM, (2005) method. Films for WVP were formulated based on experimental 

design (Table 5.1), cast on 8.4 cm diameter dishes to maximize uniformity and permeation 

cell fitting specificity. Each previously conditioned (54% RH, 23±2°C, at least 48h) film was 

carefully positioned between acrylic permeation cell containing CaCl₂ (0% RH) and enclosed 

in a humidity-controlled plastic container partially filled with 1000 mL of salt solution, 

corresponding to a relative humidity of 95%. The container was stored in temperature 

controlled incubator at 38°C, and cell weight gain was recorded every 2 hours for 10 hours 

and used for WVP calculations. WVP was calculated using Eqn. 5.2. 

 

/01 = ḿδ / AP 678 − rₒ                      5.2 

 

where ḿ, mass flow rate (g/day); δ, thickness (mm); A, cross-sectional area (m²); P, 

saturation partial pressure at 38°C (kPa); and r95- rₒ, relative humidity of outside environment 

(95 %) and cell (0 %). All tests were conducted in triplicate and mean values were used for 

calculating WVP. 

 

5.2.3.6 Thermal characterisation 
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Thermal characteristics, namely glass transition (Tg) and melting temperatures (Tm), of bitter 

cassava films were evaluated using a differential scanning calorimeter (DSC 200 F3, 

Germany) equipped with a thermal analysis data station.  

Films were prepared based on experimental design (Table 5.1) and each film (10 mg) was 

placed into a pre-weighed DSC pan. The pan was hermetically sealed, heated from 20 to 

220ºC at a rate of 10ºC/min, cooled back rapidly in liquid nitrogen for 10 seconds, and 

reheated at 5ºC/min to 220ºC. The purpose of rapid cooling and second heating was to give 

film samples thermal history, key in understanding the effect of previous processing on 

thermal characteristics of films. The Tg and Tm were calculated using the built in software 

(NETZSCH Proteus® 6.0, Germany) and determined by considering the midpoint of the heat 

capacity change observed on the second heating. All samples were evaluated in triplicate and 

mean measurements reported. An empty pan was used as a reference. 

 

5.2.3.7 Mechanical analysis  

 

Mechanical properties, tensile strength (TS), elongation at break (E), elastic Modulus (EM) 

and puncture resistance (PR) were evaluated by a TA HD Plus Texture Analyser (Stable 

Microsystems, UK) equipped with a 50 kg load cell, according to ASTM, (2009) method.  

For TS, E and EM measurements, an initial grip separation (50 mm) and cross head speed 

(1.0 mm/s) were used. Measurements were taken for at least 5 close values to obtain cross-

sectional area (thickness x initial grip distance). Ten film strips (25 x 100 mm) were cut from 

each formulation according to the experimental design (Table 5.1). TS (MPa) was calculated 

by ratio of the force necessary to break a sample to the cross-sectional area., E (%) as a 

change in the sample original length between grips at break, and EM (MPa) by ratio of TS to 

the extensional strain.  

For PR, a circular opening (10mm), probe diameter (3mm) and a speed (1.0 mm/s) were 

used, and 7 mm diameter film discs from each formulation according to the experimental 

design (Table 5.1).  PR was calculated as a maximum penetration force at the tear. 
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5.2.4 Model development and film optimization  

 

The response polynomial models were developed using factorial and  Box-Behnken response 

surface design by varying parameters namely cassava derivatives (2, 3, 4 % w/v), glycerol (2, 

3, 4 % w/w), and drying temperature (30, 40, 50 minutes) based on experimental design 

(Table 5.1) described in section 2.2. Appropriately, four models (linear, combined two factor 

interaction, quadratic) were fitted to the data in order to obtain the second order polynomial 

equations, their regression coefficients and R² values. The aliased cubic model was not 

considered for analysis.   

 

Analysis of variance (ANOVA) was used for regression coefficient determination and 

significance of examination. The model adequacy was determined by coefficient of 

determination (R2) and illustrated by the mean square pure error (MSPE). Processing 

conditions were matched with properties to determine significant effects for optimisation 

purposes. 

 

The optimisation of conditions (parameter balance) and film properties (desired functional 

combination) were achieved by a desirability methodology after fitting polynomial models to 

the data as suggested by (Derringer, 1980) (Eqn. 5.3) and reported widely.  

 

< = [>?	 @ A B	]                      5.3 

 

where, D, over all desirability; Y, responses; dy (Y), response desirability function, n, 

number of responses. (n=1); dy (Y) = 0, perfectly undesirable; dy (Y) = 1, perfectly desirable.  

Validation of optimisation was accomplished by comparing experimental results and 

predicted values obtained from fitted model equations.  

Statistica 7.1 software (StatSoft Inc., Tulsa, USA) was used to perform the above tasks.  
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5.3 Results and discussion 

5.3.1 Example of transparent and homogeneous biobased films 

 

An example of biobased films produced using intact bitter cassava is shown in Fig 5.1. 

Notwithstanding film individual unique properties, all formulations produced homogeneous, 

flexible, transparent films, demonstrating the potential of this novel sustainable material to 

reduce cassava borne environmental waste and develop biodegradable materials for food 

packaging applications. 

 
Figure 5.1. Example of films produced from intact bitter Cassava as illustrated by their visual image when 

formulated with Cassava, 4 w/v %, glycerol, 30 w/w %, drying temperature, 300C. 

 

5.3.2 Characterisation of intact bitter cassava biobased films 

 

Both formulation and optimisation experiments demonstrated that variations in processing 

conditions strongly associate with intact bitter cassava film properties. Moreover, processing 

conditions showed highly significant (p<0.05) difference in film pattern properties (Table 5.1 

& 5.2), suggesting that individual and compounded effects are important in matching 

parameters with ultimate properties. 

 

5.3.2.1 Thickness 

 

The potential influence of thickness on film properties has been widely reported with 

examples from (Prakash Maran, Sivakumar, Thirugnanasambandham, & Sridhar, 2013) and 
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(de Moraes et al., 2013). In this study extreme care was taken to minimise variations in film 

thickness to an average of 0.025 ± 0.005 mm for all experiments. Therefore, there were no 

significant differences (p > 0.05) due to influence of processing conditions on the thickness. 

Nevertheless, insignificant deviation was expected to be  caused by combined differences in 

processing parameters, with formulations falling below centre points (such as cassava: 

glycerol, 2:20 %) producing films close to 0.02 mm due high loss of water during heating and 

drying stages. (Jaqueline Oliveira de Moraes et al., 2013; Maran et al., 2013). (2013) reported 

film thickness of 0.027-0.046 and 0.070 -0.299 mm when using cassava starch, 1-3 % w/v, 

glycerol, 0.5 – 1.0 mL, agar, 0.5 – 1.0 g and span80, 0.1 - 0.5 L; 85 – 99 % with starch, 3 - 5 

% w/v, glycerol, 20 w/w% and cellulose fibre, 0.3g respectively. 
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Table 5.2. Regression coefficients and analysis of variance for film properties. Mean (β0), cassava content (β1), glycerol content (β2), 

drying temperature (β3), their corresponding interactions (β12, β13, β23), and mean square residual error (MSPE. 
Coefficients Moisture 

content 
% 

Optical 
% 

Solubility 
% 

Water Vapour 
Permeability 

g.mm/(m².day.kPa) 

Glass 
transition 

⁰C 

Melting 
temperature 

⁰C 

Tensile 
strength 

MPa 

Elongation 
at break 

% 

Elastic 
modulus 

MPa 

Puncture 
resistance 

J 
β0 1.713* 90.548* -203.520* -19.467*** 274.725* 440.500* 92.103** -

1402.20* 
13.314 623.252* 

           
Linear           
β1 -1.344* -54.204* 66.155* 5.599 -83.098* -

155.833* 
-25.362 1007.93* 31.785* -

252.896* 
β2 -0.177* 1.001* 8.665* 1.315*  -8.301*  3.800**  5.245*  1.58  -0.114  -29.588* 
β3 0.045* -2.000* 0.822* 0.021*  -2.840*  -6.792*  -6.171*  30.24*  -1.902*  -4549*  
           
Quadratic           
β11 0.139* 12.840*  -8.524* 0.778 9.214*  31.875*  5.743  -

195.016*  
-7.309*  35.027*  

β22 0.002* -0.061* -0.112* -0.021 0.134* -0.041** -0.060* 1.09* 0.027* 0.502* 
β33 -0.000* 0.019* -0.009* 0.008* 0.030* 0.028* 0.066* -0.24* 0.032* 0.062* 
           
Interactions           
β12 0.107* 0.572* -2.258* -0.061 2.070* -2.688* -0.832 -27.16* -0.163 8.358* 
β122 0.001* 0.024* 0.021* 0.006** -0.031* 0.031* 0.005 -0.21* -0.016* -0.099* 
Β112 -0.009* -0.344* 0.191* -0.055** -0.050*** 0.096*** -0.011 6.61* 0.173* -0.427* 
β13 -0.010* 0.261* 0.878* -0.214*** 0.051** 3.563* 0.800*** -5.76* -0.315** 0.637* 
Β113 0.001* -0.045* -0.144* 0.018 -0.062** -0.629* -0.048 0.95* 0.065** -0.189* 
β23 -0.001* -0.0014 -0.017* -0.009* -0.002 0.006 -0.024* -0.11* -0.006* -0.029* 
R² 0.999 0.987 0.999 0.877 0.987 0.984 0.986 0.993 0.987 1.000 
MSPE 0.000 0.108 0.079 0.244 0.485 1.646 2.714 37.338 0.355 0.470 

*     Significant at 1% level; **   Significant 5% level; *** Significant at 10% level 
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5.3.2.2 Moisture content 

 

Film moisture content (MC) was highly influenced by the processing conditions (Table 5.1 & 

5.2). Glycerol and cassava had a significantly high effect on MC than temperature in the 

linear and quadratic ranges respectively. Film MC determined following constant weight 

drying was in the range of 0.22–0.71 % (w/w, wet basis), which was very low suggesting 

that, in general, drying impacted on MC. It can be thought that increasing the content of 

cassava biopolymer derivatives in the matrix would reduce the amount of water needed. 

However, this was not observed in the present work, since derivatives worked associatively 

with glycerol to increase the moisture content of the films. This could be explained by: i) the 

high hygroscopic nature of glycerol which held water molecules into the film matrix by 

creating more hydrophilic hydroxyl groups as active sites with high affinity for water 

molecules, ii) characteristics of the derivatives of intact bitter cassava such as bigger granule 

size that absorbed more water in order to swell, and iii) pre-formed gel or post thermal 

gelation during drying such that these strong gels were able to hold water firmly within the 

matrices. 

 

5.3.2.3 Optical properties 

 

Intact bitter cassava film optical properties demonstrated highly significant associations with 

processing conditions. Drying temperature showed a highly significant (p<0.05) impact on 

film optical properties (low transparency values), with films becoming more transparent as 

temperature increases linearly and non-linearly, as shown in Table 5.1 & 5.2, Fig. 5.2 a1 & a2. 

Cassava and glycerol had a significant negative effect on film transparency, with films 

becoming more opaque when the cassava quadratic and glycerol linear combination effects 

became more apparent. However, films demonstrated more transparency when the former 

and latter combined effects were transposed. Also, notable is the individual processing 

conditions contribution on film transparency, with glycerol quadratic and linear, and cassava 

quadratic effects showing positive influences while cassava linear effect exhibited a negative 

impact.  Results showed that increasing cassava content improves film transparency. This is 

inconsistent with what is known (Moraes et al., 2013) whereby increase in cassava starch 

caused translucency or opaqueness in films, thus suggesting that intact root processing might 

be associated with modification of starch and general increase in film transparency.  
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Figure 5.2. Fitted response surfaces for (a) optical properties (MPa), (b) water vapour permeability 

(gmm/(m2.day.KPa), (c) tensile strength (MPa), and (d) glass transition (◦C) as a function of 

different levels of cassava (w/v%), glycerol (w/w%) and drying temperature (◦C). 
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5.3.2.4 Solubility 

 

The film solubility as a function of processing conditions is presented in Table 5.1 & 5.2. 

Similar to optical properties, drying temperature caused the highest film solubility in water, 

increasing linearly when drying temperature increased. Additionally, the main (cassava and 

glycerol) effects, interaction between cassava and glycerol, and between cassava and drying, 

linearly and quadratic, were significant (p<0.05). Regardless of the high solubility-enhancing 

drying temperature, causing film structural disruptions and high water mobility, low 

solubility of 16 – 40 % was obtained after 30 days. Film solubility (16 – 40 %) was 

considered to be low compared to 11-41 % obtained when solubility was measured within 24 

hours (Belibi et al., 2014).  Low values might be explained by relatively stable network 

components in the film structure imparted by intact root and other processing properties. The 

stability of solubility values after 30 days could also be explained by decreased swelling 

ability in glycerol plasticized films and their ability to resist degradation.   

 

5.3.2.5 Water vapour permeability 

 

Water vapour permeability (WVP) significantly (p<0.05) decreased, linearly and 

quadratically, with increase in drying temperature and linearly with combined interaction 

effects of cassava-drying temperature (DT) and glycerol-DT (Table 5.1 & 5.2; Fig. 5.2 b1 & 

b2).  Conversely, glycerol alone, and when combined with cassava, caused a positive impact 

on WVP, increasing linearly and quadratically as the concentrations increased. The patterns 

observed can be explained by the effectiveness of glycerol in lowering intermolecular forces 

between polymer chains leading raised WVP and perhaps the disruption of these forces at 

high temperatures leading to their strength.  

 

 

 

 

 

5.3.2.6 Thermal properties 
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The impact of processing conditions on thermal properties of intact bitter cassava, associated 

with glass transition (Tg) and melting (Tm) temperatures, are shown in Table 5.1 & 5.2. The 

cassava content had the most significant (p<0.05) effect on Tg followed by the glycerol 

content, both having the expected impact. However, the drying temperature showed a very 

highly significant effect, which is higher the higher the concentration of cassava (Fig 5.2c1). 

This is likely due to the glass transition temperature of the dried film being in the range of 

temperatures of the drying process itself. Therefore, the extent of vitrification of the structure 

during drying depends on this processing variable. In the case of Tm the effect of drying 

temperature is even more important than that of glycerol content (Table 5.2). Altogether, the 

observed extensive variations in effects of processing conditions on Tg and Tm point to the 

need to find a balance so as to produce films with desired Tg and Tm. 

 

5.3.2.7 Mechanical properties 

 

Film formulations produced wide variations in mechanical behaviour (Table 5.1 & 5.2), with 

statistical significance (p<0.05) among tensile strength (TS) (Fig d1 & d2), elongation at break 

(E), elastic modulus (EM) and puncture resistance (PR). Glycerol presented the highest 

negative linear impact on TS and EM and highest linear positive effects on E and PR, 

statistically shown in Table 5.2. Additionally, interaction between cassava and glycerol, 

cassava and drying temperature, were significant, imparting a negative linear effect on all 

mechanical properties. Altogether, these results showed the extent of plasticising and effects 

of glycerol on mechanical properties.  

 

5.3.3 Modelling of film characteristics 

 

Tables 5.2 shows the regression coefficients, and highlights significant terms for response 

surface quadratic models fittings and choice. Thus, the quadratic models were highly 

significant for all responses (p< 0.05) whereas there was an aliased condition for cubic 

models. Accordingly, the quadratic model and corresponding linear and combined two factor 

interactions was used in determining the association between processing conditions and film 

properties. Generally, all formulations, except for WVP, for the quadratic model used 

presented significant influence (p<0.05), with R² > 0.90 and their differences < 0.2 
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respectively, alluding that the model amply projected the tangible association between the 

processing conditions and film properties. Moreover, obtained R² suggested that over 90% of 

conditions and responses data explained the adequacy and significance of the models.  

 

5.3.4 Desirability optimisation of packaging films  

 

The optimal individual values for film properties as a function of optimal processing 

conditions using a desirability function (DF) is shown in Table 5.3.  DF falls between 0 and 

1, with 0 as minimum and 1 maximum. As values, tend to 1, the more optimised the process 

is achieved; the more desirable properties are provided by optimal processing conditions. 

With the exception of optical properties, the higher individual desirability values show that 

most optimised parameters were highly desired.  
 

In order to elucidate a universal optimal formulation of processing conditions that would 

concurrently deliver the most desirable film properties, a global desirability (GD) of 0.7 was 

determined for all parameters (Fig 5.3). The overall desirability considers the combined magnitudes 

of individual desirability (Table 3), expressed as a mean and achieved using Statistica software. 
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Table 5.3. Optimal values of intact bitter cassava films as determined by individual 

response desirability function. 
Parameter  Objective Experimental  Optimal  Desirability  

Property  Condition  PC FP Lower limit Upper limit   
Moisture   Minimize 0.22 0.71 0.19 1.00 
content c Minimize  2 4 4.00  

g Minimize  20 40 20.00  
dt Minimize  30 50 50.00  

Optical   Minimize 3.06 11.07 3.43 0.85 
properties c   2 4 2.00  
 g   20 40 40.00  
 dt   30 50 40.00  
Solubility   Minimize 16.58 41.34 15.52 1.00 
 c   2 4 2.00  
 g   20 40 20.00  
 dt   30 50 35.00  
Water   Minimize 3.28 7.72 3.19 1.00 
Vapour c   2 4 2.00  
permeability g   20 40 20.00  
 dt   30 50 35.00  
Glass   Maximise 36.10 54.30 56.25 1.00 
transition c   2 4 4.00  
 g   20 40 25.00  
 dt   30 50 50.00  
Melting   Maximise 182.00 220.00 213.63 1.00 
temperature c   2 4 2.00  
 g   20 40 40.00  
 dt   30 50 50.00  
Tensile   Maximise 1.80 41.05 48.44 1.00 
strength c   2 4 4.00  
 g   20 40 25.00  
 dt   30 50 50.00  
Elongation   Maximise 2.38 200 187.27 0.95 
at break c   2 4 2.00  
 g   20 40 40.00  
 dt   30 50 40.000  
Elastic   Maximise 0.10 14.20 15.95 1.00 
modulus c   2 4 4.00  
 g   20 40 25.00  
 dt   30 50 50.00  
Puncture   Maximise 1.54 74.07 81.02 1.00 
resistance c   2 4 4.00  
 g   20 40 40.00  
 dt   30 50 35.00  
c, cassava derivative (% w/v); g, glycerol (% w/w); dt, drying temperature (⁰C); PC, processing condition; FP, Film property 
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Figure 5.3. Predicted response variables and desirability values used in multiple response optimisation of 

process conditions and properties during development of intact bitter Cassava films. 

 

The multiple criteria optimisation was validated by comparing values relative to an absolute 

optimal process (Fig 5.4) in order to check the relative deviation from the optimal and 

determine desired properties. 
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Figure 5.4. Multiple criteria optimization technique for the validation of optimal values deviating from 

the set absolute optimal point ( ). The relative deviation considers how a response value 

disperses from the theorectical optimum. 

 

Except for moisture content (53.2 %), solubility (16.7 %) and optical properties (12.4 %), 

parameters had a relatively low deviation (< 10 %), indicating that the optimal values of 

processing parameters and conditions produced optimal properties with less effect on each 

other. Thus, to achieve the maximum possible match properties with low cost and maximum 

film functional performance, optimal parameters, within the experimental scope, were found 

to be: cassava powder, 2.0 %w/v; glycerol, 40.0 %w/w; drying temperature, 50.0°C; moisture 

content, 0.3 %; transparency, 3.4 %; solubility, 21.8 % ; water vapour permeability, 4.2  

gmm.m-2.day-1kPa-1; glass transition, 56°C; melting temperature, 212.6°C; tensile strength, 

16.3 MPa; elongation at break, 133.3 %; elastic modulus, 5.1 MPa and puncture resistance, 

57.9 J. Suffice to mention that individual optimal properties (Table 5.3) are slightly different 

from those obtained with a global optimal formulation, possibly due to the need to match all 

properties to a single formulation of processing conditions. Therefore, it can be possible to 
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use individual or a combination of optimal parameters to produce films. Nonetheless, with 

demand of robust design procedures at low cost production, the global procedure would 

suffice. 

 

To validate the simultaneous optimisation design, a comparison between the experimental 

and predicted responses was determined after a confirmatory controlled step was performed 

with all parameters at optimal conditions. Table 5.4 presents analogous divergence (ƍ), 

delineated as the percentage of the differences between experimental and predicted values for 

individual properties.  

 

Table 5.4. Validation of the effectiveness and adequacy of the optimization process for 

development of intact Cassava films. 

 

Response property Observed 

(optimal) value* 

Predicted value Difference 

(ƍ), % 

Moisture Content, % 0.19 0.45 58 (↓) 

Optical, % 3.43 5.29 34 (↓) 

Solubility, % 15.52 30.54 50 (↓) 

Water Vapour Permeability, 

gmm/(m2.day.kPa) 

3.19 4.50 29 (↓) 

 

Glass Transition Temp, °C 56.23  44.05  22 

Melting Temp, °C 213.63 193.57 9 

Tensile Strength, MPa 48.44  3.71  92 

Elongation at break, % 187.03  181.33  3 

Elastic Modulus, MPa 15.95 0.11 99 

Puncture Resistance, J 81.02  25.57  68 
* Values achieved with optimal processing conditions: Cassava derivative, 2 % w/v; glycerol, 40 % w/w; drying 

temperature, 300C; 

↓, relative deviations tending to minimum (computed following the object of minimising the parameter to obtain 

the desired values. 

 

With ƍ > 0 and GD of 0.7, it implies that the optimisation process was ideal and represented 

the best association between the processing conditions and film properties over the scope of 
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the parameters studied.  In addition, calculated coefficient of determination (R²), 0.996 and 

mean relative percent deviation modulus (Ṗ) > 50% further confirm the adequacy of 

optimisation. Since, in practice, fitted properties’ values were used instead of observed values 

in desirability optimisation, a Ṗ of 56 % implied that better (above/set criteria) values were 

achieved experimentally which, correspond to better quality films.  

 

Conclusion 

 

Packaging films with desirable properties were produced from intact bitter cassava, 

demonstrating the potential of this novel sustainable material to reduce cassava borne 

environmental waste, and develop biodegradable materials for food packaging applications. 

Desirable film properties were produced using optimised processing conditions, i.e., 2 %w/v 

cassava derivative, 40.0 %w/w glycerol, and 50°C drying temperature. With these processing 

conditions the film properties obtained were: 0.3%; transparency, 3.4%; solubility, 21.8%; 

water-vapour-permeability, 4.2 gmm.M-2.day-1kPa-1; glass transition, 56°C; melting 

temperature, 212.6°C; tensile strength, 16.3 MPa; elongation, 133.3%; elastic modulus, 5.1 

MPa; puncture resistance, 57.9 J. The use of drying temperature in the range of values of the 

glass transition temperatures of the dried film provided significant effects to modulate the 

properties of the films with the processing variables. A set of empirical equations was 

developed relating the properties to the processing conditions for tailoring to specific 

packaging applications.  
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Chapter 6. Effective utilisation of cassava bio-wastes through integrated design 

process: A sustainable approach to indirect waste management 

 

Abstract 

 

An integrated design process, which can be applied in small-to-medium batch processing, 

was proposed.  The process is based on the exploitation of intact (whole) cassava root, 

through optimisation of simultaneous release recovery cyanogenesis downstream processing 

for sustainable wastes minimisation and packaging material development.  

An integrative seven unit process model flow was considered in the design process 

modelling. Using the release process models, it was possible to predict the maximum yield 

(45.8%) and the minimum total cyanogens (0.6 ppm) and colour difference (4.0) needed to 

avoid wastes and unsafe biopolymer derivatives.  The design process allowed saving on the 

energy and water due to its ability to reuse wastewaters in the reactions and release processes. 

Drying rates, Scanning electron micrograph, Differential scanning calorimetry, Water vapour 

transmission rate and Fourier transmission infrared spectroscopy analyses have demonstrated 

the practical advantage of laminar flow hood air systems over oven-drying heat for integrated 

design process. 

Thus, the integrated design process could be used as a green tool in production of cassava 

products with near zero environmental waste disposal.   

  

Keywords: Cassava, process integration, optimal design, waste management, sustainability.  
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6. Introduction 

 

The continued demand for waste-free environments coupled with the unregulated and high 

costs of proper waste management, requires customised, robust, and inexpensive solutions to 

ensure sustainable waste minimisation. Currently, cassava by-products are increasingly 

contributing to the global hazardous wastes, industrial disasters and environmental health 

risks (Adeola, 2011; Kolawole, 2014). The poisonous nature inherent in most bitter cassava 

cultivars (Tumwesigye et al., 2016) contribute to some extent to environmental health risks, 

and this has been exacerbated by the decline of suitable disposal sites. Previous research 

focus has been on minimising the environmental cassava wastes by developing them into 

valuable products (Ezejiofor et al., 2014; Raabe et al., 2015; Tumwesigye et al., 2016; 

Versino et al., 2015). However, with increasing population and small-to-medium processing 

(SMP) facilities of cassava, into starch and other products, for food, feed, and non-food 

applications, waste streams such as waste solids (WS) and wastewaters (WW) will be serious 

hazards. Additionally, the above interventions are unilateral processes that are not integrated 

leading to increase waste costs. The WS and WW are usually characterised by acidification 

due to the hydrolysis of total cyanogens producing hydrogen cyanide which is toxic to 

household animals, fisheries and other organisms (Kolawole, 2014). Furthermore, serious 

environmental pollution such as foul odour and pathogen-suspended solid carriers are other 

components of WS and WW leading to surface and underground water and soil contaminants 

(Ubalua, 2007). Moreover, the greater numbers of SMP units, their poor and more time-

consuming processing methodologies, and limited disposal routes, override WS and WW 

management capacities. 

 

 The inherent traditional processing nature of SMPs does not support process integration for 

the minimisation of waste solids (WS) and wastewaters (WW). Some approaches have been 

employed to minimise environmental accumulation of cassava WS and WW. Examples of the 

strategies used currently include cultivar selection for minimisation of residue generation and 

water consumption in the industrial processes (Maieves, Oliveira, Frescura, & Amante, 

2011), bagasse for bioprocessing of organic acids, ethanol, aroma (John, 2009) and root peel 

production of biocomposites (Versino et al., 2015). Unfortunately, the underlying high 

processing costs, energy and time of the above and other strategies complicates further WS 

and WW minimisation. These strategies do not incorporate holistic approaches 
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to process design, adding further constrain to sustainable WS and WW minimisation 

management. A sustainable cassava WS and WW minimisation solution can be approached 

by optimal design models of individual processes, as drivers that give best interface 

leverages. Examples of such leverages could be achieved by applying cassava wastes in 

packaging materials production using an integrated design process. 

 

The integrated methodologies which emphasise process optimisations and consider 

production component synergisms and mathematical models are highly regarded as 

sustainable solutions for waste minimisation. The process design methods previously 

employed had been reported as graphical-based techniques such as water pinch’ analysis and 

mathematical optimisation (Majozi & Gouws, 2009). While these techniques offer a striking 

approach for waste minimization in large scale processing systems, there is need to develop 

simple attractive substitute process design that address environmental WS and WW of 

dominant cassava SMPs from a sustainable technological point of view. 

 

The key aim of the study was to develop and optimise an integrated design process (IDP) for 

effective use of cassava wastes, and development of sustainable packaging materials. 

Specifically, the study investigated an optimal structure of simultaneous release recovery 

cyanogenesis (SRRC) using individual processes and process models. The purpose was to 

gain insight into important individual processes and models that would facilitate SRRC 

integration in order to maximize WS and WW utilisation while minimising water solvent 

usage. It was anticipated that such models would exploit individual process interfaces, 

bringing in synergies and lead to sustainable processes. 

 

The study comprised process integration applicable to small-to-medium-scale batch 

processing of bitter cassava that contributes in part to accumulated environmental wastes. A 

case study for the development of packaging films demonstrating IDP improvement and 

application potential was undertaken. 

 

6.1 Experimental 

 

6.1.1 Model development and optimisation studies 
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6.1.1.1 Waste derivatives yield 

 

The objective was to develop an all-embracing optimised waste yield model and provide a 

foundation from which other process models could be optimised, and support integration into 

holistic design. Waste derivatives were processed using the root biomass of intact bitter 

cassava following the method described by Tumwesigye et al., (2016a) without 

modifications. The yield model was developed using a Box-Behnken-design by varying 

parameters namely buffer (0, 2, 4 % w/v), cassava waste solids (15, 23, 30 % w/w), and 

extraction time (4, 7, 10 minutes) based on experimental design (Table 1a). Data analysis was 

performed as describe in Tumwesigye et al., (2016b) using Statistica 7.1 software (StatSoft 

Inc., Tulsa, USA)  The resulting process model was optimised with multi-response 

desirability model (Eqn. 6.1) (Derringer, 1980).  

 

D = [dy (Y)] 1/n           6.1 

 

where, D, over all desirability; Y, yield (%); dy (Y), yield desirability function, n, responses 

(n=1); dy (Y) = 0, perfectly undesirable; dy (Y) = 1, perfectly desirable.  

 

Table 6.1.  Box-Behnken experimental design processing parameters used in biopolymer 

derivatives production. Biopolymer yield (a), total cyanogens and colour (b).  

(a) 
Variables Coded levels 

 
x1 ( -1) 

 
x2 ( 0 ) 

 
x3 ( +1 ) 

 
 Buffer (w/v %) 0 2 4 
Waste derivative (w/w %) 15 23 30 
 Extraction time (minutes) 4 7 10 

(b) 
Variables Coded levels 

 
x1 ( -1) 

 
x2 ( 0 ) 

 
x3 ( +1 ) 

 
 Buffer (w/v %) 0 2 4 
Waste derivative (w/w %) 20 30 40 
 Sodium bisulphite (%) 1 2 3 
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6.1.1.2 Total cyanogens and colour 

 

Total cyanogens (TC) was analysed using the kit developed by Bradbury et al., (1999), and 

colour estimated by the colour difference (∆E) using CR-400 Chroma Meter, Konica Minolta 

Sensing Japan. The TC and ∆E models were developed using a Box-Behnken-design with 

buffer (0, 2, 4 % w/v), cassava waste solids (15, 23, 30 % w/w), and sodium bisulphite (1, 2, 

3 %) based on experimental design (Table 6.1b). Their process models were optimised using 

multi-response desirability model (Eqn. 6.2) (Derringer, 1980). 

 

D = [dTC (TC) x d∆E (∆E)] 1/n                6.2 

 

where, D, over all desirability; TC, total cyanogens (ppm); dTC (TC), total cyanogens 

desirability function, ΔE, colour change; d∆E (∆E), colour desirability function; n, responses 

(n=2); dTC (TC) and d∆E (∆E) = 0, perfectly undesirable; dTC (TC) and d∆E (∆E) = 1, 

perfectly desirable.  

  

6.1.2 Evaluation of integrated design process  

 

Integrated design process for cassava waste solids (WS) and wastewater (WW) minimisation 

and packaging film development was studied using a conceptualised process model flow 

depicted in Fig. 6.1.  

Processes inherent within the root SRRC and those externally sourced, were defined, 

described, analysed and used in the design of integrated downstream processing model. The 

criterion for selection and analysis was based on the added value each process would 

contribute to utilisation of wastes and greatly facilitated WS and WW minimisation at low 

cost, energy and time. In particular, special attention was paid to reaction processes in the 

release and recovery through wastes recovery, total cyanogens reduction and colour 

improvement after pulping. 
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Fig. 6.1  Generalised integrated design process model. A, B, C, D, E, F, G represent unit operations. 

The doted lines process units show where water, energy and implied costs were minimised 
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6.1.2.1 Biopolymer derivatives drying rate studies 

 

The drying rates of the biopolymer derivatives, were performed by using either a 

conventional oven- drying (Memmert Universal Oven U, Model 600, Germany), or a laminar 

flow hood air system (Rangehood) (Kottermann High Performance Lab Hood Cupboards, 

UK. The loss in weight of the derivatives was measured every 30 minutes until a constant 

weight was reached. The air flow velocity, temperature and relative humidity (RH) of the 

rangehood was 0.62 m/s, at  20-22ºC, and 50-60 %RH, respectively, while those of the oven 

was 0.2 m/s, 25ºC and 50-60 %RH. The airflow velocity was monitored using an 

environmental monitor (Solomat 510e, UK). All the measurements were taken in triplicate 

and the drying rates comparisons were considered using the constant rate period.  

 

6.1.2.2 Biopolymer derivatives microstructure 

 

Biopolymer derivatives microstructure (DM) characteristics were examined using Scanning 

Electron Microscope (SEM), JSM-5510 (Joel Ltd., Tokyo, Japan). A derivatives powder 

sample was placed on stubs using double-sided carbon tape to form a very thin layer and 

leaving a space on either side of the strip to allow clear observation of surfaces and cross 

section. Prior to capturing SEM images, powder stubs were spluttered with a thin layer of 

gold. Powder stubs were subjected to a focus magnifications as high as 20 000x and images 

capture between 200x and 30 000x magnification and intensity of 5 kV. 

 

6.1.3 Film formulation  

 

Intact bitter cassava films were formulated and optimised as described by Tumwesigye et al., 

(2016). Biopolymer derivatives (3g) and glycerol (30%) were dissolved into deionised water 

to make 100% solution, mixed by magnetic stirrer (5 min) and heated to 70ºC until a clear 

solution was obtained. The cycle lasted 25 minutes. The solution was cast onto circular dishes 

(d=14 cm) and dried in a rangehood (airflow velocity, 0.62 m/s). The dried films were easily 

peeled off and kept for further use.  
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6.1.3.1 Film thermal analysis 

 

Differential scanning calorimeter (DSC 200 F3) was performed by weighing a derivative 

sample (10 mg) into aluminium pan, sealing and treating it to heating-cooling cycle from 

20ºC to 250ºC at 10ºC/minute. Experiments were performed in triplicate. 

Thermogravimetric analysis (TG Analyser, Spectrum 500) was performed by heating a 

derivative sample between 30⁰C and 500⁰C, at 20⁰C/min using nitrogen at 60 mm/min. 

Experiments were performed in triplicate. 

 

6.1.3.2 Film water vapour transmission rate  

 

Water vapour transmission rate (WVTR) was measured gravimetric using ASTM, (2005). A 

sample was mounted between acrylic permeation cells, containing previously dried (105ºC, 

9h) 4g CaCl₂ (0% RH), enclosed in a humidity-controlled (95%RH) container placed in an 

incubator (38°C). The changes in weight of the cell were recorded every 2 hours for 10 hours 

and data obtained was used for WVTR calculation. Experiments were performed in triplicate. 

 

6.1.3.3 Film chemical characterisation 

 

Fourier transform infrared spectroscopy (FTIR) was performed by using UV/Vis spectrum 

one spectrometer (Perkin Elmer Lambda 35, USA). The changes in spectra intensities were 

measured between 4000–400 cm-1 at 4cm-1 resolution in the transmittance mode with 30 

scans at room temperature. The averages of three samples were used plotting the spectra. 

 

6.2 Results and discussion 

 

6.2.1 Integrated design process description 

 

The cassava simultaneous release recovery cyanogenesis (SRRC) downstream processing for 

waste solids (WS) and wastewater (WW) minimisation integrated with packaging film 

development comprised seven operation units (Fig. 6.1). The concept was intended to 
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minimise wastes by directly processing fresh intact bitter cassava root biomass and avoid 

underlying costs, energy, time, intended and unintended disposal efforts, of additional 

alternative processes for waste management. Process modelling and optimisation was 

intended to determine the most economic SRRC design process for sustainable use of bitter 

cassava into value added products and minimise wastes. Particular focus of modelling and 

optimisation was on early stages of the design (pulping and reactions/release) because it 

holds most important processes to enhance modifications and release of wastes and 

associated compounds.  

 

6.2.1.1 A: Mechanical pulping 

 

In order to attain sufficient total cyanogens hydrolysis and finer fibrous waste solids for 

production of good quality and non-toxic pulp, an efficient mechanical pulping was required. 

This was achieved by ensuring that the pulping efficiency of ≥ 90% was applied in pulping 

process using time-dependent model (Eqn. 6.3). 

 

Pulping	time, s = 36144.36 + 33.11v − 845.74<= − 0.39@<= + 0.01@A +

4.97<=A						(CA = 0.95)	      6.3 

 

where, v, pulper drum velocity; and ɳg, pulping efficiency. 

 

In pulping process, the breakdown of cells activates hydrogen cyanide release from 

cyanoglucoside linamarin, a precursor of cyanide related compounds (Fig. 6.2a).  

 



Chapter 6 Integrated process design system for cassava biomaterials: General layout 

162 
 
 

 

 
Fig. 6.2  Total cyanogen behaviour during pulping stage. Hydrolytic pathway (a) and comparison of 

degradation rate between intact and peeled cassava root (b). 

 

The hydrolysis of linamarin into cyanohydrins and hydrogen under the influence of 

linamarase enzyme (Fig 6.2a) has been widely reported as important factor in cyanogenesis 

process (Cereda & Mattos, 1996; Crowe & Bradshaw, 2014). Cyanogenesis (loss of total 

cyanogens) was examined between intact and peeled during pulping process, and was found 

to vary greatly when pulping efficiency was increased. As shown (Fig. 6.2b), intact roots 

demonstrated higher total cyanogens loss than the peeled roots, further confirming the 

intrinsic hydrolysis by the intact root as previously reported (Tumwesigye et al., 2016). 

 

6.2.1.2 B: Reaction and release 

 

The goal of the reaction and release was to improve extraction and yield of biopolymer 

derivatives. Addition of ionic buffers (sodium chloride and dilute sulphuric acid) helped to 

release the biopolymers. Nearly all the root biomass was converted into the derivatives when 

the model and optimised yield was applied in the extraction (Eqn. 6.4, Table 6.2, Fig. 6.3). 

	

EFGHI,% = 27.55 + 21.81L + 1.21M − 2.27N − 1.10LM − 0.62LN + 0.16MN 

−4.95LA − 0.06MA − 0.11NA + 0.017LMA + 0.13LAM + 3.59LAN						 CA = 0.91           6.4 
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Table 6.2.  Global desirability analysis of yield showing optimal results as influenced by 

optimal processing conditions 

 

Parameters 
Experiment 

Levels 

Optimal 

derived 

parameter 

values 

Properties 

Yield, % 

Desirability 
Optimum Range 

Buffer, % v/v 0.0 2.0 4.0 4.0 

45.8 15.0 – 55.0 1.0 
Waste, % w/w 15.0 23.0 30.0 30.0 

Extraction time, 

minutes 
4.0 7.0 10.0 10.0 

 

 

 
Fig. 6.3 Global desirability analysis of yield 

 

Furthermore, the purification of biopolymers from impurities of special interest, total 

cyanogens (TC) and colour, were accomplished by reaction additives. Reactions between TC 
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(from the pulping stage) and sodium salts of bisulphite and chloride further ensured that more 

derivatives were freed from total cyanogens, as shown by the reaction Eqns. 6.5 and 6.6. 

Another important impurity of concern is the colour, which is the liberated colour of peel 

biomass after derivative extraction. This was handled by employing food grade sodium 

bisulphite (SB), in addition to ionic buffers, which has been widely used to bleach coloured 

products such as paper pulp (Guo, Zhou, & Lv, 2013) and food. The SB, under acidic 

conditions, acts as a reducing agent and in the process is oxidised (Eqn. 6.3) (Guo et al., 

2013).   

 

Bisulphite (HSO3
-) → HSO4

-                   6.5 

 

 
 

In order to improve the release and reaction, TC and colour were modelled and optimised as 

shown (Eqns. 6.7 & 6.8, Table 6.3, Fig. 6.4. The individual and global desirability showed 

that the solution for TC and colour reduction in biopolymers could be feasible by obtaining 

0.6 ppm and 4.0 when applying buffer (4.0 % v/v), waste solids (18.8 % w/w) and sodium 

bisulphite (3.0 %) respectively at the release stage.   

 

OPNQH	RSQTPUGTV, WWX = 

−9.65 − 0.65L + 1.59M − 0.52VL − 0.50LM + 1.07LVL − 0.03MVL + 0.93LA 

−0.03MA + 0.04VLA + 0.01LMA + 0.05LAM − 0.28LAVL																	 CA = 0.96            6.7 

 

YPHPZ[	RℎQTUG, ∆^ = 

10.08 − 0.26L + 3.31M − 0.07VL − 0.02LM + 1.00LVL − 0.00MVL + 0.71LA 

−0.01MA + 0.24VLA + 0.00LMA + 0.02LAM − 0.02LAVL																	 CA = 0.96            6.8 
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Table 6.3.  Global desirability analysis of total cyanogens and showing optimal  

results as influenced by optimal processing conditions 

Parameter Experimental 
Level 

Optimal 
derived 

parameter 
value 

Properties 
Total cyanogens, TC 

D 
Colour difference, ΔE 

D 
Optimum Range Optimum Range 

Buffer, % 

v/v 
0 2 4 

4.0  (TC) 

4.0  (∆E) 

2.0 -0.5-3.5 0.8 0.24 0.12-0.3 

1

.

0 

Waste, % 

w/w 
15 23 30 

18.8  (TC) 

22.5  (∆E) 

Sodium 

bisulphite, 

% w/w 

1 2 3 
3.0  (TC) 

3.0  (∆E) 

 

 

 
Fig. 6.4  Global desirability analysis of total cyanogens and colour difference 
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6.2.1.3 C &D: Centrifugation and washing 

 

Centrifugation and washing design stages were aimed at refining the biopolymer derivatives, 

separation of wastewater (WW) and dilutions of hydrogen cyanide and bisulphite 

compounds. For the purpose of saving energy on deionising water and maximize resource 

utilisation, WW was recycled between centrifugation, washing and release stages. The WW 

was concurrently used to further aid the reaction stage and refine the biopolymers. This is 

because WW still contained bisulphites and ionic salts, which were sent back to reaction and 

release stage as a reaction solution for efficient TC and colour removal.  Frequent washing 

and filtration eliminated a bigger proportion of cyanide-bisulphite complexes since the latter 

ionise in water to form soluble complexes. 

 

In order to quantify the volume of solvent recycled in release-centrifugation-washing-

recovery cycle, the supernatant retained after the slurry was separated and measured. 

Cumulative volumes were measured from the frequency of the cycle. The supernatant-rich 

dissolved ions of cyanide and bisulphite reused at every cycle is shown in Table 6.4. 

 

Table 6.4.  Water involved in release-recovery cycle during processing of biopolymer 

derivative production 

Release-Recovery 

cycle 

Volume of water/100 g 

pulp, ml 

Supernatant reuse, 

ml 

Solvent recovery, 

% 

1 100 85.5 (85-90) 87.5 

2 100 90.0 (88-92) 90.0 

3 100 92.5 (91-94) 92.5 

 

 

As shown in Table 4, the volume of solvent required included 100, 12.5 (range 10-15) and 

7.5 (range 6-9) ml for initial, second and third cycle, respectively. Therefore, the integrated 

reuse would save about 60 % of extraction solvent by the fourth cycle, in comparison to the 

traditional process. 
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6.2.1.4 E and F: Recovery 

 

The recovery stage was aimed at eliminating the solvent-rich residues of remaining cyanide 

and bisulphite in a safe and economic way using a rangehood. Similarly, film solvent was 

evaporated using the rangehood. This was done in order to avoid energy costs of using a 

separate drying method. The disposal pathway gave optimal results by consuming wastes 

from derivative processes and film production with zero direct emission of wastes into the 

environment. To minimise the energy costs associated with conventional heat drying of the 

biopolymers during the recovery stage, a comparative study using laminar flow hood air 

system and oven-heating was conducted. The comparative results between oven-drying rates 

and microstructural characteristics and those of laminar flow hood air system are presented in 

Fig 6.5. 

 

 

 
Fig. 6.5.  Drying rate curves of biopolymer derivatives associated with rangehood (a) and oven-drying 

(b). 
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Fig 6.5 shows the differences in drying rates exhibited by the two drying systems, but with 

similar linear decreasing curves. However, the drying rate of rangehood (curve a) is slightly 

faster than of oven-drying (curve b). Thus, the slightly faster drying rate of the rangehood 

could be an option in low-cost design processes. 

 

The scanning electron micrographs (SEM) wastes derivatives (WD) are illustrated in Fig. 6.6, 

showing a more compact structure for a rangehood dried WD (a) and heterogeneous loose 

structure for oven-dried WD (b). These results imply that drying in the rangehood did not 

cause much alteration in the structure in contrast to the oven-drying impact, which could 

suggest that less physico-chemical changes occurred in the rangehood dried WD. Thus, the 

rangehood could be integrated in the WD design production process as a potential tool for 

green waste disposal. 

 

 
Fig. 6.6  SEM microstructural characteristics of biopolymer derivatives dried using rangehood (a) and 

oven-drying (b). 

 

6.2.2 G: Film package development 

 

The purpose of integrating package development into the design was to exploit available 

waste derivatives, the same solvent source and a rangehood drying process. In this way, 

wastes to the environment are minimised and energy for solvent purification and materials 
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drying are minimised. As a result of successful production of derivatives, flexible and 

transparent films with potential packaging applications were produced. The prototype films 

developed from the wastes and dried with the rangehood are shown in Fig. 6.7.  

 

 
Fig. 6.7  Film prototypes dried using a rangehood, as a roll (a) and bag (b). 

 

The thermal performance of the films shown by the comparisons between rangehood and 

oven-drying conditions is shown in Fig. 6.8. The thermal degradation of rangehood (a) was 

slightly lower than for oven-drying (b), which suggested the slow loss of volatiles. However, 

the degradation equalled later for both treatments. Similar behavioural patterns were observed 

with differential scanning calorimetric (DSC) thermograms of a and b but with lower melting 

temperature and sharper peak in a than b. As can be seen from the inset table, the melting 

(Tm) and glass transitional (Tg) temperatures were in the same range, in contrast to the lower 

crystallinity (C) of the rangehood. The high C in films dried by ovens could be due to heating 

that disrupted the microstructure (Denry, Holloway, & Gupta, 2012). 
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Fig. 6.8  TGA degradation (C) and DSC thermograms (D) of rangehood (a) and heat oven (b) dried 

films 

 

The water vapour transmission rate (WVTR) is an important parameter for package 

performance and could be used to compare technologies. The film WVTR using the 

rangehood (707.4 g/m² day) was slightly higher than for oven-drying (685.7 g/m² day).  The 

results show that non-heat drying process can be integrated with heat dryers to reduce energy.  

This could be due to a weak surface resistance of films at higher airflow velocity. 

Conversely, the observed value in oven dry films could be related to saturated vapour 

pressure of water at lower velocity. 

 

Physical and chemical changes can be affected by many production processes including 

drying.  Fourier transform infra-red (FTIR) spectroscopy was aimed at understanding the 

possible structural and physico-chemical alteration differences among the rangehood and 

oven-dried films. As shown in Fig. 6.9, the rangehood (a) and oven-dried (b) films spectra 

were similar, suggesting that the two drying methods did not post any differences in films 

chemical composition (Tumwesigye et al., 2016). These findings give light on the 

improvement of the rangehood, through optimisation of the conditions, as an alternative for 

integration in the design process. 



Chapter 6 Integrated process design system for cassava biomaterials: General layout 

171 
 
 

 

 
Fig. 6.9  FTIR spectra of rangehood (a) and heat oven (b) dried films 

 

Conclusion 

 

This work proposed a new sustainable approach for potential utilisation of cassava waste and 

reduction of their environment impact using an integrated seven unit process design. The 

design approach is founded on the exploitation of: (i) intact (whole) cassava root; and (ii) 

optimised SRRC as an effective way to avoid environmental wastes accumulation, and also to 

reduce the energy and costs of designing additional processes for starch production, waste 

management and package production. 

The optimised model results showed that using intact root and SRRC in biopolymer 

derivatives production, could be an effective tool for green cassava production processes. If 

ionic buffer (4% w/v), wastes (30/w/v), and extraction time (10 minutes) is applied in the 

process, the optimum yield could reach 45.8 % which approximates the weight of the intact 

root. Furthermore, the integrated design process has the advantage of saving on the energy of 

water deionisation/distillation due its ability to reuse wastewaters in the reactions and release 

processes. The analyses of drying rates and SEM for derivatives, and DSC, WVTR and FTIR 

for films have shown that it could be possible to substitute oven-drying with laminar flow 

hood air systems in the integrated design process. 

Thus, the integrated design process could be used as a green tool in production of cassava 
products with near zero environmental waste disposal.  
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Chapter 7. Evaluation of Suitability of Novel Bitter Cassava Films for Equilibrium 

Modified Atmosphere Packaging of Tomatoes 

 

Abstract 

 

Equilibrium modified atmosphere packaging (EMAP) of fresh produce relies on modification 

of atmosphere inside the package, achieved by the natural interplay between product 

respiration and transfer of gases through the package. While designing an EMAP system is 

important to consider product respiration rate, packaging permeability, supply chain 

(temperature and relative humidity, RH), and potential need for perforations to achieve the 

recommended product-specific gas composition. EMAP films are usually non-bio-based 

(oriented polypropylene, OPP), but interest has been shown in sustainable bio-based 

materials. A novel packaging material film was recently developed from intact bitter cassava 

(IBC) and preliminary trials showed potential for EMAP of tomatoes. The objectives of this 

work were to i) assess effect of EMAP design parameters on gas composition for cherry 

tomatoes, and ii) compare performance of bio-based IBCF with non-bio-based film (OPP) for 

EMAP. Cherry tomatoes (125g) were packed considering an experimental design with 4 

factors and 2 levels (bio-based, non-bio-based films; 0, 1 perforation; 10, 20°C; 75, 95 % 

RH). Package oxygen composition was analysed in duplicate using a non-invasive optical 

oxygen sensor until the equilibrium was reached.  

The results show that intact bitter cassava film (IBCF) in-package O2 composition reached an 

equilibrium at 2 % and 3 %, after 180 h (over 7 days) at 10°C, with 0 or 1 perforation, for 

75% and 95% RH respectively. This ensured that the mould growth on cherry tomato surface 

was inhibited until 15-19 days of storage at 10⁰C. The similarities in the equilibrium O2 

composition of 2% between perforated and non-perforated suggest that there would not be 

need to perforate IBCF. Besides, there is need to establish the possible structural changes 

likely to occur in IBCF at high RH. Factorial analysis on package performance showed that 

film type, perforations, temperature, relative humidity, and their interaction had varying 

significant (p≤0.05) effects on O2 composition. Temperature and RH influenced IBCF 

significantly, whereas perforations, temperature and their interaction impacted on OPP 

significantly. Desirable O2 composition of 3.73 % for IBCF EMAP of cherry tomatoes was 

achieved with optimised design parameters, 13.8°C, 82 % RH, 0.135 mm, while one of OPP 
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(8.6 %) did not fall within the recommended 2-5 % O2 composition; hence, IBCF can be an 

alternative film for EMAP.  

Demonstration of the potential application of IBC film for EMAP was shown. However, 

further studies on the impact of external environments on EMAP of IBC film, in view of 

tailored application, are necessary.  

 

Keywords: Bitter cassava, Modified atmosphere, Oxygen, Relative humidity, Temperature, 

Cherry tomato 
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7.1 Introduction 

 

Increased consumers’ interest and demand for more natural and minimally-processed fresh 

fruits and vegetables has increased in the last 20 years. Consumer’s lifestyles towards 

convenience, nutritious and ready-to-use fruits, and the awareness of disease-reducing 

capacity of quality fruits and vegetables, have led into innovative technologies in food 

processing. Modified atmosphere packaging (MAP) is a widely-demonstrated technology, 

which is increasingly used for the preservation of natural quality of fruits and vegetables in 

addition to extending the storage life (Horev et al., 2012). MAP storage is one of the most 

successful preservation techniques suitable for wide varieties of agricultural and food 

products. In particular, there is increased awareness of value chain actors on advantages of 

MAP due to stringent regulations on the use of chemical preservation methods. 

 

The equilibrium atmosphere packaging (EMAP) concept for fresh produce is all about 

adaptation of the in-package atmosphere, realised by the natural interplay between the 

product respiration and the mass transfer of gases and water vapour through the packaging 

material. The modification results into in-package environment superior in CO2 and inferior 

in O2, with the objective of extending the shelf life of perishable food and concurrently 

maintaining the product integrity. EMAP can be used to preserve the quality of tomatoes by 

reducing the respiratory rate, inhibiting the colour changes and the growth of microbial 

populations that lead to rotting. It is widely established that the oxygen concentration 

reduction results in a decrease of respiration rate causing a slowdown of various biochemical 

processes and reduction in tomato quality degeneration.  

 

For EMAP of tomatoes, mostly commercial non-biodegradable films, applying perforations 

(micro and macro), with some change in package gas composition (O2 and CO2), are among 

popular technical solutions. However, the environmental issues of non-biodegradable films, 

effect of highly variable supply chain conditions (humidity, temperature) on in-package gas 

composition, have inevitable consequences in tomato EMAP quality. Although, in vitro 

EMAP experiments to modulate in-package gas composition have shown promise, non-

biodegradability of film packages, anomalies in perforations and absence of in situ 

evaluations to take care of supply chain conditions, would limit their applications in tomato 
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packaging intended to extend their shelf life. Besides, these approaches have not provided 

satisfactory responses to the challenges of EMAP of tomato. Currently, there is no universal 

agreement on desirable EMAP of tomatoes, and this can impact significantly on tomato 

supply chain.  

 

Tomato storage, trade and consumption are repeatedly challenged by fungal rot 

contamination, prompted by a plethora of factors; the major ones include poor handling and 

suitable conditions for microbial growth such as in-package oxygen, temperature and 

moisture. Tomato decay can be caused by many fungal organisms (yeasts or moulds), and 

fungal elimination has been always difficult to control than their counterpart bacterial due to 

their much larger cells and environmentally-resilient high spore numbers (Bartz, Sargent, & 

Scott, 2012). Substantial devotion has been put in tomato fungal rot control measures using 

various approaches (Chapin, Wang, Lutton, & Gardener, 2006; Gil, Selma, López-Gálvez, & 

Allende, 2009; Matthews, Sapers, & Gerba, 2014). Among the approaches, the most 

commonly used packaging films for fresh tomatoes are based on non-biodegradable materials 

such as polyethylene terephthalate (PET), polyvinylchloride (PVC), polyethylene (PE), 

orientated polypropylene (OPP) and polystyrene (PS). While these are readily available with 

good physico-chemical properties (Siracusa, Rocculi, Romani, & Rosa, 2008), their non-

biodegradability can lead to adverse effects on the environment, and thus triggering risk to 

human health or ecosystems (Mahalik & Nambiar, 2010). Recently, there have been 

increased efforts to use natural and renewable biobased sources such as starch, cellulose, 

polylactic acid (PLA) and polyhydroxyalkanoate (PHA) for food packaging purposes. 

However, they have not yet found wide use in food packaging application perhaps due to the 

high development costs, low performance and difficult processing (Mensitieri et al., 2011). 

Thus, sourcing for an inexpensive dependable alternative biobased material for EMAP is 

crucial.  

 

Intact bitter cassava (IBC) flexible films are fully biodegradable and their potential for food 

packaging (Tumwesigye, Oliveira, & Sousa-Gallagher, 2016) can provide promising 

alternatives for EMAP. The non-competitive bitter cassava bioresource and the possibility of 

producing it in one step by using simultaneous release recovery cyanogenesis makes it 

particularly suitable for industrial scale up and development of EMAP at cheaper cost. Owing 

to their sensitivity to moisture, IBC film evaluations for package performance across 
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conditions under the supply chain is vital. Thus, an understanding of the environmental 

impact on, and performance of, IBC films in EMAP of tomatoes is fundamental to their 

recommended use in packaging of fresh produce. IBC can be of great value to minimize the 

cost of package development and improve package performance, enhance storage efficiency 

and extend the shelf-life of tomatoes, and provide sustainable convenience in EMAP 

development. The objective of this study was to assess effect of EMAP design parameters on 

gas composition for cherry tomatoes, and ii) compare performance of bio-based IBC film 

with non-bio-based oriented polypropylene (OPP) film for EMAP. The results would help in 

determining the IBC film performance and design EMAP for fresh produce.  

 

7.2 Methodology 

7.2.1 Material preparation 

 

Flexible packaging films for EMAP designs were prepared from intact bitter cassava (IBC) 

derivatives as described in Tumwesigye et al., (2016) without further modifications. Prior to 

in-package oxygen evaluations, the films were conditioned at 54 %RH, for 48 h, at 23±2°C, 

followed by equilibration conditions of 75 or 95 % RH, at 10 or 20°C, for 48 h. The 

equilibrated films were used within 2 days. A commercial reference packaging film, oriented 

polypropylene (OPP) (Infania Group GmbH, Germany) was also prepared together with 

IBCF and used for comparison. 

 

Freshly-delivered cherry tomatoes (Solanum lycopersicum) were purchased from a local 

supermarket (Tesco, Cork, Ireland), cleaned of any dirt with distilled water, dried on clean 

adsorbent papers, and kept under refrigeration (4 - 7°C) until further use. To ensure that the 

qualitative analysis yielded convincing results, red tomatoes with smooth, shiny and 

reasonably hard skin, with no visible mould (Fig 7.4) were sampled for the study.  

 

7.2.2 Experimental set up and package performance analysis 

 

EMAP performance of IBC film was evaluated and compared to OPP film based on the 

experimental design (Table 7.1). The parameters and conditions were chosen based on the 

average recommended temperature (10°C), for handling of tomatoes, and abuse conditions 

(20°C) encountered in the supply chain. It is widely accepted that package behaviour and 
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performance of any packaging material are by far influenced by the environmental conditions 

(temperature and relative humidity) and the in-packaged product characteristics. Thus, further 

to the quantitative measurement, a qualitative parameter (mould growth) was factored in the 

performance evaluation.  

 

Table 7.1.  Equilibrium Modified Atmosphere Packaging (EMAP) design evaluation 

parameters 

Factor Level 
 x1  x2  

 

Packaging film 

 

OPP 

 

IBC 

Perforation  0 1 

Temperature (◦C ) 10 20 

Relative humidity (% RH ) 75 95 

 

7.2.3 In-package oxygen composition 

 

Cherry tomatoes (125 g) were placed into polypropylene trays (11.1 cm x 15.5 cm x 3.4 cm), 

a film (IBC or OPP), with a thickness of 0.03 ± 0.002 mm and breathable area of  0.013 m², 

laid on top and hermetically sealed. For a film requiring perforation, a needle of diameter 

0.27 mm was used to pierce the film perpendicularly, careful enough not to impart 

unnecessary tear to the micro pore. It was assumed that the pore area corresponded to that of 

the needle. Both perforated and unperforated films were stored in relative humidity controlled 

boxes (75 and 95%) and in temperature incubators (10°C and 20°C) for 15-19 days. The 

required RH was achieved by using pre-determined quantity of water and glycerol  as per 

Forney and Brandl (1992).  

 

Changes in package oxygen composition were measured directly by placing the optical fibre 

cable on the headspace side, containing the sensor, (PreSens Precision Sensing, Germany). 

The measurements were performed in duplicate packages, and the means used in computing 

headspace oxygen composition at regular intervals. When equilibrium was reached O2 and 

CO2 measurement was determined using PBI Dansensor, Check-mate 9900 Rǿnnedevej 18). 
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7.2.4 Analysis of experimental data 

 

A full factorial analysis of variance was used to determine the significant (p < 0.05) impact of 

4 factors at 2 levels on the headspace oxygen amounts. A Statistica software (release 7, 

Statsoft, USA) was used to fit polynomial models to O2 and effect of estimates necessary for 

evaluating the closeness of the experimental data to fit values. 

 

7.3 Results and discussion 

 

7.3.1 Influence of EMAP design parameters on gas composition for cherry tomatoes 

 

An example of the effect of design parameters (Table 7.1) on the dynamics of headspace 

oxygen composition for cherry tomatoes stored using IBC film is shown in Fig 7.1. The O2 

concentration of cherry tomato in-package gas composition reached equilibrium at 2 % and 3 

%, after 180 h (over 7 days) at 10°C, with 0 and 1 perforation, for 75 % and 95 %RH 

respectively. Thereafter, the O2 concentration remained stable for the rest of the test period, 

suggesting that equilibrium was attained.  

 

 
Fig 7.1.  Evolution of the dynamics of in-package headspace oxygen concentration of stored cherry 

tomato using intact bitter Cassava (IBC) film, at 10°C, with 0 and 1 perforations at 75 or 95 % 

Relative humidity (RH).  
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These results imply that there would not be the requisite for perforating the IBC film since a 

minimum of 2 % O2 concentration in respiring tomato packages is acceptable. However, due 

to the relative humidity and temperature dependence of product respiration, and O2 

permeability of IBC packaging films, this could enhance significant fluctuations of the O2 

concentration of EMA in-packaged fresh tomato. Thus, to gain insight into the influence of 

the impact of individual or combined EMAP design parameters on headspace O2 behaviour, 

this was further analysed, and the results are presented in Fig. 7.2. 
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Fig 7.2.  Individual or combined influence of EMAP design parameters on equilibrium headspace O2 

concentration, as shown by Pareto analysis of ai) combined IBCF and OPP; bi) IBCF, ci) 

OPP; and ANOVA of aii) combined IBCF and OPP; bii) IBCF; and cii) OPP. 

 

Pareto analysis showed that individual and combined EMAP design parameters had influence 

on equilibrium headspace O2 concentration (Fig. 7.2). The type of film, film-perforation 

interaction and temperature had highly significant (p < 0.01) negative effects, while 

perforating a film caused a significant positive impact on O2 concentration (Fig. 7.2ai). 

Further analysis of these results showed that the influence of the type of film and its 

perforation had a more pronounced influence than the effect of temperature (Fig. 7.2aii). The 

results seem to imply that perforating a film results in high initial headspace O2 concentration 

in-package (positive value), whereas non-perforated film lead to low initial O2 concentration 

(negative values). 

 

To determine which individual film parameters had more influence, the data for IBCF and 

OPP were analysed separately, and the results are shown in Fig 7.2b and Fig 7.2c. It is shown 

that temperature had negative (Fig 7.2bi) and highly positive (Fig 7.2ci) significant (p < 0.05) 

effect on oxygen dynamics in the IBCF and OPP package respectively. Temperature and its 

interaction with perforation also showed less significant negative and positive effect on OPP 

in-package O2 concentration. On the other hand, RH-perforation interaction, RH, and 

temperature-RH interaction influenced positively the IBCF in-package O2 concentration. 

Taken together, the results showed that perforations caused more pronounced impact in OPP 

in-package (average, 8.556) (Fig 7.2cii) than did the combined influence of temperature and 

RH in IBCF (average, 3.411) (Fig 7.2bii) in-package headspace O2 concentration. The results 
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mean that temperature provided a higher concentration gradient in-package and caused more 

loss of O2 than the combined O2-raising effects of RH-perforation, RH and temperature-RH. 

Perhaps, this could explain the almost same equilibrium O2 stability of perforated and non-

perforated IBCF (Fig. 7.1). Conversely, the perforated OPP tended to offset the temperature 

and gradient effects, thereby allowing more O2 in-package. In other words, OPP showed a 

contrasting effect of providing a higher equilibrium O2 concentration than IBCF, as shown by 

the positive value (Fig. 7.2cii).  

 

Generally, when all the EMAP design parameters were compared, it was revealed that 

perforations had a higher influential behaviour on oxygen dynamics in the OPP in-package 

than when temperature and RH were considered individually or combined (Figs. 7.3a, b, c, 

and d). This could be due to definitive relevance and stability of OPP perforations to allow 

more permeation of O2 regardless of temperature and relative humidity. 
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Fig 7.3.  Influence of a) film type-perforations; b) film type-temperature; c) film type-RH; and 

temperature-RH, and their respective plots of marginal means on the dynamics of cherry 

tomato in-package headspace oxygen concentration using IBC (Cassava) and oriented 

polypropylene (OPP) films.  

 

It is shown that perforating IBC films did not have any influence on equilibrium headspace 

O2 concentration, while using a single perforation in OPP had a significant influence on 

equilibrium headspace O2 concentration (Fig. 7.3ai and aii). Temperature had more marked 

effect on OPP than IBCF in-package modulation of O2 concentration (Fig. 7.3bi), with IBCF 

managing its O2 concentration to lower levels than OPP (Fig 3bii). Similarly, it is shown that 

RH had an influence on IBCF than OPP (Fig. 7.3ci). The result showed that OPP packages 

the headspace O2 concentrations independent of RH (Fig. 7.3cii). Overall, increase in RH at 

10°C did not influence O2 concentration, whereas, when temperature was raised to 20°C, the 

increase in RH became important. 

 

The disparity in the impact of perforated and non-perforated IBC in-package O2 composition 

might be due to either the presence of sufficient IBC film micro pores to allow for proper 

permeability or the antagonistic effect on pores that occur at high RH leading to non-
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functional voids. If the former holds true, then it can be postulated that the IBC film 

permeability for O2 gas varies with temperature in the same way as tomato respiration rate, 

thereby preventing anoxia conditions inside the package, for the conditions studied. However, 

this hypothesis requires validation with more experiments at different temperatures and 

relative humidity closely related to the supply chain ones. By contrast, the antagonistic 

effects at higher relative humidity that cause structural changes in the IBC film could be 

averted by modifications in the film formulation for desired permeability. Unfortunately, 

matching the package properties with desired in-package atmosphere is not a simple task. 

This requires models that can consider the kinetics of respiration of in packaged tomatoes and 

the prediction of IBC film mass transfer properties in order to develop tailored film packages. 

Similarly, a variety of EMAP influential parameters, such as those intrinsic to the tomatoes 

and from environment, can be optimise to obtain optimum O2 gas composition, and leads to 

desirable optimised EMAP. 

 

A critical analysis (Figs. 7.3d and 7.3e) reveals that a single perforation (used in this study) 

was more important to cause high changes in the headspace O2 composition than the 

combined effects of RH and temperature. On the other hand, the result showed that OPP was 

not significantly influenced by changes in RH and temperature, for the conditions studied. 

However, changes in environmental conditions could cause high variations in headspace O2 

composition which could compromise attaining the desirable headspace gas concentrations. 

Perhaps, a better meaningful perforation system would be attained when the size of the 

perforation is downsized below the current 270-300 microns. 

 

Another approach to evaluate the effective performance of packaging films is to quantify the 

quality parameters of the packed product. However, in the absence of quantitative 

assessments, in-package product can be evaluated qualitatively. In this study, the qualitative 

evaluations were conducted by observing mould growth on tomatoes as a function of changes 

in the IBC and OPP in-package atmospheres, and an example of these results are presented in 

Fig 7.4.  
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Fig 7.4.  Example of cherry tomatoes in-package using IBC film at (a) 10⁰C or 20⁰C at 0 day, 95 % RH 

(b), 20⁰C, 95 % RH after 15 days and (c) 10⁰C, 95 % RH after 19 days of storage.  

 

The mould growth on tomato surface was seen on the OPP packages of tomatoes within 10 

days, whereas in IBCF packages mould only appeared after 15 days (Fig 7.4b) at 20⁰C, 95 % 

RH, and after 19 days of storage at 10⁰C, 95 % RH (Fig 7.4c). The mould growth delay 

observed with IBC film-packages (Fig 7.4b), might be due to optimum equilibrium headspace 

concentration (O2 and CO2 3-5%).   

 

An attempt was made to optimise the parameters, and determine if they could provide a 

desirable level of O2 concentration for EMAP design, and the results are presented in Fig 7.5 

and Fig. 7.6.   
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Fig 7.5. Fittings used to determine the adequacy of main effect and two-way interaction models to 

predict O2 concentration for EMAP with a) combined IBCF and OPP; b) IBCF; c) OPP. 

 

The significant terms for main and interaction effects model fittings and choice, is shown in 

Fig. 7.5. Consequently, the main effects and combined two factor interactions was used in 

determining the relationship between design parameters and equilibrium headspace O2 

concentration. As shown, the model sufficiently predicted the correlation between design 

parameters O2 concentration, as best fit plots of combined parameters (Fig. 7.5a), IBC (Fig. 

7.5b), and OPP (Fig. 7.5c). Besides, over 98 % of parameters and O2 concentration data 

explained the suitability and significance of the models (R2 > 98). 

 

The results show that the desirable 3.11 % O2 (Fig. 7.6ai) and 4.73 % CO2 (Fig. 7.6aii) 

concentration was achieved for IBC, whereas for OPP was 7.65 % O2 (Fig. 7.6bi) and 11.39 

% CO2 (Fig. 7.6bii), with temperature (10°C), RH (75 %), zero perforation. Thus, it can be 

concluded that, within short-term storage under the conditions defined, IBCF can maintain 

EMAP in contrast to OPP. However, validation of these results is important to determine the 

integrity of IBCF at high temperatures and RH as well as prolonged storage.  
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Fig 7.6  Predicted optimal parameters, desired O2 and CO2 concentrations and desirable values used in 

optimization of EMAP as shown by profiles for predicted values and desirability of: ai and aii) 

and bi and bii) OPP at ai) at ai) at optimum (75 % RH, 10 ⁰C, zero perforation). 
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Conclusion 

 

This work evaluated the suitability of intact bitter cassava (IBC) films for the design of 

equilibrium atmosphere packaging of cherry tomatoes. Both perforated and non-perforated 

films produced similar equilibrium headspace O2 composition, implying that perforating the 

IBC film might not be necessary. Temperature and RH were significantly (p< 0.05) 

associated with shifts in equilibrium headspace O2 composition, suggesting that care must be 

exercised when IBCF packages are placed under real conditions during the distribution chain. 

The optional requirement of perforations for IBC than OPP films is an advantage of these 

films to be deployed as alternative film packages for fresh produce. Nonetheless, care should 

be taken while using IBCF as these film are highly influenced by variable environmental 

conditions. The delayed mould growth on tomatoes packaged in IBCF packages could be 

attributed to optimum equilibrium headspace O2 /CO2 concentration, showing potential for 

application of IBC film in EMAP designs of fresh produce. The targeted desirability value of 

3.11% O2 and 4.73 % CO2 headspace concentration of intact bitter cassava films is a good 

promise for these films to be used for EMAP. However, more research is needed to validate 

the desirable value under stress conditions of the supply chain. 
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Chapter 8. Sustainable biomaterials recovered from waste bitter cassava as potential 

nutraceutical excipient tablet carrier of micronutrients Iron and Zinc 

 

Abstract 

 

The drive of this study was to explore the possibility of using polysaccharide-rich derivatives, 

recovered from intact bitter cassava using simultaneous release recovery cyanogenesis 

(SRRC), as an apt to find alternative materials for micronutrient carrier table excipients. 

Explicitly, the study aimed to determine the properties of SRRC-processed intact bitter 

cassava suitable for making tablet excipients, formulate tablets with iron and zinc and 

determine disintegration time rate and simulate in-vitro dissolution rate. The tablets were 

prepared from peeled and intact bitter cassava powders, based on a preliminary screening 

designed to select the powder derivative, and with best tableting properties, capable of 

formulating nutraceutical excipients for fast Iron (Fe) and zinc (Zn) delivery. 

Microcrystalline cellulose was used as a reference material with known properties for 

developing drug excipients. Both peeled and intact bitter cassava derivatives (PD) were 

characterised for properties suitable for making tablets. Tablet formulation was prepared with 

Fe and Zn, and by wet granulation of PD. Disintegration and in-vitro release were performed 

in deionized water, pH 1.2 and pH 6.8 media, at 37⁰C. Kinetic models were used for 

describing matrix dissolution and Fe/Zn release mechanisms.  

Intact bitter cassava PD allowed formulation of tablets, showing better properties than peeled 

cassava PD, to which the tablets were selected for in vitro dissolution studies. Tablet 

excipient matrices demonstrated faster dissolution and Fe/Zn release within 30 to 45 min, 

across all tablet weights, with dissolution rates of about 90%. All the kinetic models 

described the release mechanism, with best fits (R² > 0.85).  

The study highlights potential of intact bitter cassava polysaccharide-rich derivatives as an 

excipient that can enhance fast releases of Iron and zinc. The recovered biomaterial from 

waste cassava may provide broader applications as potential alternative nutraceutical 

excipients. 

 

Keywords: Waste, cassava, Nutraceutical, Tablet excipient, delivery system, Iron, Zinc 
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8.1 Introduction 

 

The popularity of the concept of waste valorisation (WV) and research on green materials 

from natural sources have attracted great attention in a number of applications such as 

packaging, pharmaceutical, nutraceutical, agro-chemical, polymer and biofuel manufacturing 

among other industries. The WV is the idea of adding value to the waste stream in an 

economically viable manner (Lin et al., 2013). Among the waste biomass is cassava by-

product streams, which can be categorised as food and industrial grade wastes. Cassava by-

products have the potential to provide sources of economically polysaccharide-rich 

derivatives that might be used in the development of high value functional products for 

different manufacturing industries. Ongoing research on valorisation of cassava by-products 

includes the simultaneous release recovery cyanogenesis (SRRC) of biopolymer derivative-

rich polymers such as cellulose, holocellulose, lignin and other monosaccharides 

(Tumwesigye, Morales-Oyervides, Oliveira, & Gallagher, 2016a).   

 

Conventional drug carrier system involves intravenous administrations (IA) to enhance fast 

deliveries and bioavailability. However, the IA may be distressing and can cause local 

reactions to the recipients. Furthermore, although the oral administration route meant to 

ensure recipient satisfaction and compliance, has gained steadily, some orals may exhibit 

poor gastrointestinal instability and poor solubility as well as cost.  Thus, pursuing a carrier 

and delivery process that is inexpensive and user-friendly is crucial to ensure a sustainable 

delivery system. 

 

One common method in drug delivery is the development of excipients which have the 

potential to enhance the bioavailability, stability and cost-effectiveness. Although, most tablet 

excipients have been used to deliver pharmaceutical drugs, the trend of their use in 

nutraceutical is growing fast globally. Current nutraceutical table excipients’ market growth 

trends are driven by changes in the consumer diet trends, influenced by high malnutrition 

incidences such as lack of micronutrients (Iron, zinc), and escalation of non-communicable 

diseases such as coronary heart diseases, obesity and diabetes. According to World Health 

Organization, (2014), cardiovascular diseases caused death to 1.5 million people in 2012. 

Thus, increasing availability of nutraceutical excipients might be a solution to both iron 

deficiencies and non-communicable diseases. It is estimated that men iron requirement is on 



Chapter 8. Sustainable biomaterials recovered from waste bitter cassava. Part 1. Application in nutraceutical 
excipient tablet carrier 

191 
 
 

 

average 8.7 mg/ day, women who are menstruating need iron around 14.8 mg/day, and 

extremely iron-deficient groups may need up to 200 mg a day. 

 

Currently, polymeric excipients constitute the largest share in the delivery system, as tablet 

binder, lubricant, anti-adhesives, tablet disintegrator, filling agent, coating agent, solubilising 

agent, stabiliser, emulsifying and gelling agents among other properties (Karolewicz, 2015). 

Among the polymers, cassava could be a potential low-cost tablet carrier and binder of 

nutraceuticals. At present, the by-products produced from cassava processing, and in 

particular bitter cassava, are considered as waste products. In our previous research, waste 

biomass derivatives from intact bitter cassava provided polysaccharide-rich derivatives which 

might deliver useful excipient tablet properties. Thus, there is a need to assess the potential 

applications of these waste by-products.  

 

The purpose of this study was to: i) determine the properties of polysaccharide-rich 

derivatives, recovered from intact bitter cassava using SRRC, suitable for making tablet 

excipients; (ii) formulate tablets with iron and zinc, and (iii) determine disintegration time 

rate and simulate in-vitro dissolution rate. 

 

The study was conducted into two stages. In the first part, the experiment was intended to 

determine the sole effect of SRRC and intact bitter cassava on PD properties that have 

potential in the development of new oral tablet excipients for enhancement of bioavailability 

and stability of nutraceuticals. Specifically, establish whether the novel PD can be endowed 

with properties for the development of an ideal (self-sustaining) excipient with two or more 

functionalities such as good flowability and compressibility. Here, two samples, subjected to 

different process conditions (Tumwesigye, Oliveira, & Sousa-Gallagher, 2016b), were tested 

for direct tablet compression. For the second part, the flowability and compression properties 

were optimised, based on the results obtained in the first stage, using granulation, and tablets 

were formulated with Iron and zinc. 

 

8.3 Materials and methods 

 

8.3.1 Materials  

 

Bitter cassava roots were obtained from producers’ fields in northern Uganda. 
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Iron (II) sulphate heptahydrate (ACS reagent, ≥ 99%); and Zinc acetate (ACS reagent, ≥ 

99%) were purchased from Sigma Aldrich Ireland. All the chemicals were used as they were 

without further modification or treatment, and in the form they are available and absorbed in 

the body. 

 

8.3.2 Polysaccharide-rich derivatives (PD) production 

 

Bitter cassava PD were recovered from the root biomass according to Tumwesigye, Oliveira, 

& Sousa-Gallagher, (2016b) without modifications. Using this method, two different 

samples, a test sample (named PDI) and a control (named PDP) were prepared. The PDI was 

obtained from intact root (without peeling) and PDP was extracted from the peeled root using 

SRRC. The traditional methods of obtaining biomaterials includes peeling, and in this study, 

PDP was used as a control to determine the potential of using intact root, while exploring 

SRRC, on developing self-sustaining excipients. The PD powder used for subsequent tests 

was kept below 10 % RH using a desiccator. 

 

8.3.3 Characterisation of PD 

 

8.3.3.1 Particle size and shape (PSS) 

 

The PSS analysis was carried out by using woven wire test sieves in the 35 µm to 1 mm pore 

size range (Endecotts, UK), and by a CAMSIZER XT with 1 µm - 3 mm pore size measuring 

range (Retsch Technology, Germany). 

The sieves were stacked top-down according to sieve aperture in the 1.4, 90 and 710 µm 

range, a 50 g PD powder placed on the top sieve, and the sieving performed with auto-

vibration for a fixed time of 10 minutes.  

To ensure a uniform particle size, shape and distribution, the samples were further analysed 

using the CAMSIZER, and the results analysed by Quad Core PC software.  

 

8.3.3.2 Bulk and tapped densities, Carr’s Index and Heckel plots 

 

The determination of the bulk density (Bd) and tapped density (Td) followed a method 

described in USP (2012). The PD samples (10 g) were transferred into a pre-weighed 
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graduated cylinder (25 ml, 0.5 ml markings, 14.3 mm diameter). The bulk volume was 

recorded after manually tapping the cylinder 10 times on a flat table top surface. The tapped 

volume was recorded with the Electrolab ETD-1020 Tap Density Tester (Globe-Pharma, 

Toronto) after tapping in increments of 500 and 1250 taps with 250 drops per minute. 

Triplicate tests were conducted for Bd and Td. 

 

The bulk density (Bd) was calculated as the fractional bulk weight (Bw) of the bulk volume 

(Bv) according to Eqn. 8.1.  

 

B` =
ab
ac

                      8.1 

 

The Bw is the initial weight of the particles in the cylinder, and Bv is the initial volume before 

tapping (T).  

 

The tapped density (Td) was computed as the fractional bulk weight of the tapped density, 

expressed in Eqn. 8.2. 

 

T̀ = ab
ac

                    8.2 

 

where, Td, the tapping density. 

 

The Carr’s compressibility/compatibility index (CCI) provides insight into the flow 

properties of powder substances. The CCI was calculate from the Bd and Td using Eqn. 8.3, 

and the Hausner ratio (HR) Eqn. 8.4. 

 

CCI = T̀ − B`
ghh
ij

                  8.3 

 

HR = ij
aj

                   8.4 

 
The Heckel equation (HE) determines the reduction mechanism under the 

compressional/compaction force, and in this study was determined following the compaction 
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method described in Heckel, (1961) with modifications.  According to Heckel, the product 

bulk densification is a proportionality between the change in density with pressure and the 

pore fraction (porosity) (Eqn. 8.5):  

 
mno
mp

= α 1 − ρs                   8.5 

 

where, ρᵣ, the relative density (ratio of the density of the compaction pressure to the density 

of the compaction at zero void); P, the compaction pressure, 1- ρᵣ, pore fraction (porosity); 

and α, constant associated with proportionality. 

Similarly, Porosity (1- ρᵣ) can be stated as Eqn 8.6: 

 

1 − tu =
vwxv
vw

                    8.6 

 

where, VP & V, volume at any applied load and volume at theoretical zero porosity, 

respectively. 

 

Rearranging Eqn. 8.5 and integrating Eqn. 8.7 

 
mno
gxno

= α ∂P                   8.7 

 
mno
gxno

no
noz

= α ∂Pp
p{

                  8.8 

 

where, ρᵣₒ, relative density of uncompact PD powder at zero pressure (Pₒ). 

 

The Eqn. 8.9 can be linearized as: 

 

ln g
gx|}

= ~� + ln g
gx|}{

                 8.9 
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It is known (Heckel, 1961) that, often, the data do not lie on a straight line when ln (1/1- ρᵣ) 
vs P plot is obtained due to the impact of rearrangement processes in the PD powder and, the 

general behaviour of the PD as discrete particles rather than a coherent mass at low pressures. 

Thus, Eqn. 8.9 was transformed into Eqn. 8.10 by substituting [ln (1/1- ρᵣ)] with a constant 

(A). Eqn. 8.10 gives a quantitative validity which disregards lowest pressures. 

 

ln g
gx|}

= ~� + Ä                           8.10 

 

where,  A (intercept), is  the degree of packing achieved at low pressures, and α (slope of the 

linear region), a measure of the ability of the compact to density by plastic deformation 

(Heckel, 1961). 

 

8.3.4 Preparation and analysis of tablet excipient from PD 

 

8.3.4.1 Preparation 

 

A hydraulic hand press (Specac P/N 15011/25011, UK), set at predetermined low (2 MPa), 

medium (5 MPa) and high (7 MPa) pressures was used to press PD into 100, 250 and 500 g 

tablets. Precisely weighed PD samples were introduced into the press and compressed using 

stainless steel flat-circular punches (9.3 mm in diameter) with a constant force for pre-

determined pressures. The resulting tablets were inspected for possible visual defects such as 

flecks, cracks, shape and size.  

To determine the effectiveness of intact bitter PD to make quality excipients, a comparative 

study of known polymer material, microcrystalline cellulose, was run concurrently using the 

same procedure and test conditions. 

 

8.3.4.2 Analysis of tablet properties 

 

The uniformity of weight of the tablets was determined by weighing, individually, a set of 20 

tablets using a digital analytical balance (AX 105 Delta Range ± 0.0001 g, Mettler-Toledo, 

Greifensee, Switzerland), and their weights averaged. The percentage deviation of the 

individual tablets from the mean was determined according to Eqn. 8.11. No more than 2 of 
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the individual masses should deviate from the average mass by more than the percentage 

deviation applicable for the tablet and, no individual mass should deviate by more than twice 

that percentage.  

 

D,% = ÇxÉ
Ç

100                8.11 

 

where, D, deviation;ϖ, mean weight; and w, weight of individual tablets. 

 

Tablet thickness and diameter were measured by a Mitutoyo micrometer (Absolute Digimatic 

ID-S Série 543–790B ± 0.003 mm, Codima Roboflux, Décines, France) immediately after 

compression as permitted by the European Pharmacopeia methods (European 

Pharmacopoeia, 2015) and reported in Juban, Nouguier-Lehon, Briancon, Hoc, & Puel, 

(2015). 

 

Tablet tensile strength was determined 2 days following their formulation at 20-25 ⁰C by an 

ElectroPulsTM E10000 Linear-Torsion All-Electric test instrument (Norwood, MA 02062, 

USA). For each compression load (50 MPa, 100 MPa and 200 MPa), a minimum of three 

tablets per composition were tested, and the tensile strength (TS in MPa) was calculated 

according to Fell & Newton, (1970) using Eqn. 8.12.  

 

TS = AÜ
á`à

                  8.12 

 

where, ƒ, fracture fore; d, diameter; and l, overall thickness. 

 

8.3.5 Preparation of Iron and zinc tablets  

 

8.3.5.1 Wet granulation 

 

Tablet formulation was prepared initially by wet granulation of PD using distilled water. The 

PD powder (200 g) was loaded into a vessel and granulated using a 4M8 ForMate Granulator 

(Pro-CepT, Zelzate, Belgium). The powder was subjected to pre-mix conditions of 500 rpm 

impeller and chopper speeds for 3 min., and finally granulated using 1000 rpm impeller 
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speed, 120 % impeller torque, 2000 rpm chopper speed, 3 ml/min. dosing speed, 30 mL total 

dosing quantity, and 22 0C mixture temperature for 30 min. The granulated samples were 

dried in vacuum oven at 70 0C for 12 hours. Moisture content was determined using PMX 60 

Moisture analyser (Chromlab Scientific Services, UK), and a mean value of 2.25 % was 

recorded. The dry granulated samples were sieved (Endecotts, UK) to 850 µm uniform 

particle size, and stored in a desiccator until further use.  

 

8.3.5.2 Compression 

 

Prior to compression, the contents of PD excipients, Iron (II) sulphate heptahydrate and zinc 

acetate were formulated (Table 8.1) and mixed uniformly in a low speed mixer at 30 rpm for 

30 min. A hydraulic hand press (Specac P/N 15011/25011, UK), set at 200 MPa was used to 

press the granulated samples into 100, 250 and 500 g tablets as described in subsection 2.4.1 

(this study). 

 

Table 8.1.  Quantities of cassava PD, Iron and zinc used in excipient development and 

dissolution studies 

Formulation Excipient, 

mg 

FeSO4.7H2O, 

mg 

Zn(CH3COO)2 · 2H2O 

, mg 

Tablet size, 

mg 

 

Cassava PD 100 0 0  

100 Cassava PD + Fe 50 50 0 

Cassava PD + Zn 75 0 25 

Cassava PD 250 0 0  

250 Cassava PD + Fe 200 50 0 

Cassava PD + Zn 225 0 25 

Cassava PD 500 0 0  

500 Cassava PD + Fe 450 50 0 

Cassava PD + Zn 475 0 25 

Cassava PD + Fe +Zn 425 50 25 
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8.3.6 Disintegration and dissolution  

 

8.3.6.1 In vitro dissolution studies 

 

In vitro dissolution was determined simulating U.S. Pharmacopeia (USP) method as 

described (Chowhan & Chi, 1986) with modifications. The dissolution solvent was 300 mL 

(pH 6.8) achieved by phosphate buffer and 900 mL (pH 1.2) obtained with 0.1N hydrochloric 

acid. Both solvents simulated gastric fluid without enzymes were maintained at 37 0C (range 

of body temperature). 

The PD Excipients-Iron (II) sulphate heptahydrate and zinc acetate tablets were dissolved in 

the solvent of respective pH at 37 0C and stirrer (50 rpm, 60 min.). The experiment was setup 

in such a way that a weighed tablet was placed on a suspended mesh platform inside of a 

beaker and rotating paddle inserted in the beaker at a height of 25 mm from the tablet. A 

sample was withdrawn after every 10 min and the undissolved excipients removed by 

filtration (Whatman no. 1 filter paper). Serial dilutions of the filtrate were made from 10 ml 

of the initial filtrate, and their UV absorbance recorded at 242 nm using a Biochrom Libra 

S22 UV/vis spectrophotometer (Cambridge CB4 0FJ, UK). A control containing only PD 

excipient was run concurrently. Similar quantities of Fe and Zn were dissolved in respective 

pH 6.8 and 1.2, serially diluted and used to derive standard curves.  The experiment was 

replicated three times, and the data described quantitatively using mathematical models. 

. 

8.3.6.2 Application of mathematical models for the description of Fe/Zn dissolution 

mechanism 

 

Fe/Zn dissolution can be best interpreted by kinetic models, similar to what has been used in 

drug dissolution. The model spells out the quantity (Q) of Fe/Zn dissolved as the function of 

dissolution time (t), i.e., Q = ƒ (t). However, most excipients are developed in different forms 

and types resulting in different release mechanisms (slow, medium, fast), and this 

necessitates a dissection of the more elaborate models, in addition to kinetic model. This 

helps to understand the behaviour, type of release and angle of application of intact bitter 

cassava PD. Based on this background and the types of excipients developed in this study, 

and in addition to kinetics of release, the first order kinetics, Weibull, power, Baker-Lonsdale 

and Hoffenberg models were applied for the interpretation of dissolution. 
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When the excipient is dissolved in the test solvent, it undergoes absorption which occurs, 

first, at the surface. This involves a single reactant-the Fe/Zn release, and thus the First order 

kinetic model (Gibaldi & Feldman, 1967; Samaha, Shehayeb, & Kyriacos, 2009; Silva & 

Wagner, 1969), can be applied to describe the dissolution phenomena (Eqn. 8.13)  

 

log Cä = log Ch +
ãä

A.åhå
                8.13 

 

where, Ct, micronutrient concentration in solvent at time, t; C0, initial amount of 

micronutrient in the solvent; and k, first order release coefficient.  

This provides a straight line graph when the c-t graph is developed, and gives the description 

of proportionality of Fe/Zn release. 

 

In ideal situations, the diffusion and release of nutraceutical should follow the Fickian law. 

Nonetheless, due to differences in experiments, anomalous behaviour dominates solute 

motions. Thus, a more generic power law Eqn. 8.14, suggested by Ritger & Peppas, (1987) 

was used to study behavioural release of micronutrient from the novel intact bitter cassava 

PD excipients.  

 

Fä = ktè                  8.14 

where, Ft, function of time that is represented by Mt / M0, the fractional release of 

micronutrients from the excipient; k, constant defining the structural characteristics of the 

excipient; and n, release exponent describing the release mechanism. The general dependence 

of n on the diffusional mechanism (Ritger & Peppas, 1987) is shown in Table 8.2 

 

Table 8.2. Assessment of solute diffusional release mechanisms 

 

Release exponent, 

n 

Nature of diffusion 

mechanism 

Time dependence of fractional 

release rate (Ft) 

0.5 Fickian t-0.5 

0.5 < n< 1.0 Anomalous (non-Fickian) tn-1 

1.0 Case II Zero order (time dependent) release 

n > 1.0 Super case II tn-1 
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Application of Baker and Lonsdale (1974) model was aimed at describing the micronutrient 

release from the heterogeneous spherical excipient tablets. It is important to note that most 

nutraceutical excipients are often heterogeneous, and this could have a significant influence 

on micronutrient release mechanism. Thus, to determine any possible loosening within the 

tablet matrix such as fissures or streaks, Baker-Lonsdale Eqn. 8.15 was used: 

 

Fä =
å
A
1 − 1 − êë

êí

ì
î − êë

êí
= kt              8.15 

 

where, Mt and M∞, Fe/Zn quantity released at time t and infinite time; and k, release constant 

(slope) 

 

In perfect homogeneous excipients, the release of Fe/Zn would assume uniform surface 

erosion. However, due to anticipated heterogeneous erosion nature of current excipients, a 

model developed by Katzhendler, Hoffman, Goldberger, & Friedman, (1997) was explored 

(Eqn. 8.16). 
 

ïñ
ïф

= 1 − ò{ô
ö{õ{

ú
                 8.16 

 

where Mt, quantity of Fe/Zn dissolved in time, t; Mф, total quantity of Iron/zinc dissolved 

when the excipient tablet is fully exhausted; Mt/Mф, fraction of Fe/Zn dissolved; k0, erosion 

rate constant; C0, initial concentration of Fe/Zn in excipient tablet matrix; X0, initial radius of 

excipient tablet matrix; and n = 3 (for spheres). It was assumed that there was no influence of 

internal and external resistance perpendicular to the erosion.  

 

Tablet excipient dissolution efficiency (E, %) was determined from the area under the curve 

of C-t plot of Iron/zinc dissolved at time, t or can be derived from Eqn. 8.17 (Khan, 1975).  

 

E,% =
û	�üë

{
û†{{	ä

∗ 	100                8.17 

 

According to Pharmacopoeias, the acceptance dissolution limit is, t45 ≥ 80%. 
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8.3.7 Statistics  

 

Statistical significance for the differences between the tensile strengths of the dispersed and 

agglomerated formulations was evaluated by ANOVA. Dissolution profiles were assessed by 

calculating the similarity factor f2 according to the instructions of the FDA (FDA, 1997). 

Only one time point after 85% of drug released was included in f2-value calculations. Should 

the f2-value be less than 50, the dissolution profiles were considered different (Mäki et al., 

2007). 

 

8.4 Results and discussion 

 

8.4.1 Particle size and shape (PSS) 

 

Fabrication of tablet excipients depends on the uniformity of particle sizes in the starting 

formulations, which makes compaction more effective, and thus regulated delivery matrices. 

Fig. 8.1 illustrates particle distribution in different samples of PD and compared to 

microcrystalline cellulose (MCC).  

 

 
 
Fig 8.1  Particle size distribution function Q3 (d) analysis of materials used in excipient tablets. 

Microcrystalline cellulose (MCC, b); from peeled root (PDp, c); and intact root (PDI, a)  
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Generally, particle size and shape distribution of PDp and PDI followed the same pattern as 

that of MCC, although MCC showed a more uniform distribution compared with the PDs. 

The unevenness in distribution might be due to less quantity of PDs used compared with 

MCC.  

The d-values define the diameters of the sphere which divides the samples weight into a 

specified percentage when the particles are arranged on an ascending mass basis. Thus, d50 

and d90 describe the diameters at which 50 % and 90 % of the sample's weight comprised 

particles with a diameter less than the respective values. Accordingly, the d50 of PDI, PDp 

and MCC were in the region < 0.3, <0.8 and V1.0 mm, while their respective d90 were < 2.8, 

< 3 and < 4 mm. Thus, it can be concluded that 90% of PDI and MCC particle distribution 

were within less than 3 mm. 

 

8.4.2 Bulking properties, Carr’s Index and Heckel analysis 

 

The intact bitter cassava PD bulking analysis showed that true, tapped and bulk densities of 

PDI are lower than those of PDp (Table 8.3).  The lower values of true, tapped and bulk 

densities of PDI than for PDp might be due to the nature of their particle size and shape 

distribution, with PDI revealing a more uniformity in particle size than for the PDp (Fig 8.1). 

The tap density of a material can be used to predict the flow properties and its 

compressibility, thereby providing durable solid excipients with the desired strength, porosity 

and dissolution characteristics. In this study, PDI true density was found to lie within the 

range reported for microcrystalline cellulose (MCC) reported values (1.52 – 1.668 g/cm3, and 

close to a true density of a perfect cellulose crystal (1.582 – 1.512 g/cm3) (Sun, 2005).  

 

Table 8.3  Bulking properties of intact bitter cassava PD 

 

Cassava PD Particle density, g/cm3    

True Tapped Bulk Hausner 

ratio 

Carr’s Index 

PDp 1.75 0.63 0.61 1.03 3.17 

PDI 1.57 0.59 0.55 1.01 16.6 

PDp, derivative from peeled cassava; PDI, derivative from intact bitter cassava 
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The associative true densities of PDI and MCC is reflected in their particle and shape 

distribution as shown in Fig. 8.1, reported in subsection 3.1. By contrast, the higher PDp true 

density might be due to a more heterogeneous particle size and shape, deviating from that of 

PDI and MCC. Moreover, the differences between PDI and PDp bulking properties might be 

a function of their production in the SRRC process and handling (treatment and storage). 

 

The hausner ratios close to 1.0 suggested that the powders were free-flowing. The higher 

Carr’s Index of PDI than that of PDp meant that the inter-particulate and intra-particulate of 

PDI material interactions were significantly lower than those of PDp. This meant that PDI 

powder presented better free-flowing capacity compared with PDp, although PDp exhibited 

the closeness of the bulk and tapped densities than for PDI. This unusual apparent contrast 

could be attributed to the difficulties in measuring powder bulking properties. Bulk and 

tapped value closeness defines the best flowing properties of the powder. Thus, it can be 

concluded that PDI had a better free-flowing ability than PDp.  

 

The effect of elastic deformation of PD and MCC particles on Heckel analysis is presented in 

Fig. 8.2, indicating that, generally, the void fraction of the three materials was not much 

different at the initiation of compression. However, detailed analysis showed that the porosity 

increased in the order, PDp < PDI < MCC. These results imply that the PD inter-particulate 

bonding seemed to be strong, thereby making PDp and PDI to behave like a powder with 

minimal free-flowing properties compared to MCC. Moreover, the shapes of the graphs show 

that particle fragmentation, plasticity and elasticity for the order PDp < PDI < MCC 

corresponding to increases in compression force. 
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Fig 8.2.  Impact of elastic deformation of intact bitter cassava PD particles on Heckel Analysis (a), and 

as compared to microcrystalline cellulose (b). 

 

Additionally, there appears to be similarities in the way PDI and MCC undergone plastic 

deformation (horizontal section). However, MCC seemed to show a more systematic 

compaction than PDI. Apparently, the higher increase in porosity of MCC over short 

increases in compression pressure than PDI could be attributed to low inter-particulate 

bonding of MCC particles. The implication of the Heckel analysis result points to the need to 

tailor intact bitter cassava PD processing to the demands of the tablet excipients. 

Unfortunately, in this study, the PD was investigated as processed for diverse products. 

Nevertheless, the analysis highlights promising potential for cassava PD. Conversely, the 

failure of PDp to compact confirms that employing SRRC on intact roots produce better 

derivatives than has been conventionally peeled.   

 



Chapter 8. Sustainable biomaterials recovered from waste bitter cassava. Part 1. Application in nutraceutical 
excipient tablet carrier 

205 
 
 

 

8.4.3 Impact of bitter cassava and SRRC on excipient tablet properties 

 

Uniformity of weight of tests carried out on 20 tablets at high pressure (7 MPa) showed that 

both PDp and PDI had mean weights of 413 mg and 484 mg with mean deviation of 1.56 % 

and 0.68 % respectively. The deviations for both tablet types were lower than the 

recommended value of 5 %. The slightly high deviation of PDp could be attributed 

differences in the bulk densities and particle size distribution during compression. 

 

Physical property analysis of tablets compacted by different pressures showed that PDp 

yielded tablets at high pressure only, whereas PDI produced tablets when subjected to all 

pressures (Table 8.4). The crumbling of PDp at medium and high pressures were mainly due 

to the inability of particles to compact. Generally, PD tablets exhibited lower values of 

hardness and tensile strength than the MCC. This may be attributed to the nature of initial 

sample processing. MCC is universally produced by spray drying the neutralized aqueous of 

strong acid hydrolysed cellulose slurry in order to manipulate the degree of agglomeration 

(particle size distribution) and moisture content (loss on drying) (Thoorens, Krier, Leclercq, 

Carlin, & Evrard, 2014). By contrast, PD is a product of weak acid hydrolysis that was oven-

dried. Unlike spray-drying, oven drying does not offer the desired agglomeration and 

controlled moisture loss. Thus, when PD and MC were subjected to direct compaction, MCC 

had improved compatibility or tabletability of the compression mix. A minimum of 4 KG 

crushing strength is required for satisfactory hardness. Slow release, oral and hypodermic and 

chewable tablets have 10-20, 4-10 and 3 KG crushing strength respectively. The slightly 

lower but insignificant differences in crushing strength of PD might be due particle 

morphology of the initial materials. 

Thus, the desirable physical properties of intact bitter cassava PD can be attained by 

improvements in the SRRC process, particularly with increased acid hydrolysis, and using a 

slightly older root (> 12 months maturity). Besides, the drying can be revisited to include 

spray drying.  
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Table 8.4.  Effect of intact bitter cassava and SRRC on the compaction properties of excipient tablets  

 

Materials Pressure, MPa Hardness, KG Diameter, mm Thickness, mm Weight, mg Tensile strength, 

MPa 

PDp  

2 

- - - -  

PDI 2.32 ± 0.99 13.09 ± 0.04 3.16 ± 0.04 506.36 ± 2.84 0.35 

MCC 53.88 ± 1.92   12.96 ± 0.004 3.19 ± 0.05 507.65 ± 8.49 8.3 

 

PDp  

5 

- - - -  

PDI 2.42 ± 0.07 13.08 ±	0.01 3.14 ± 0.07 511.48 ± 9.7 37 

MCC 66.04 ± 2.26   12.95 ± 0.004      3.04 ± 0.076 503.78 ± 5.64 10.86 

 

PDp  

7 

2.34 ± 4.43 13.12 ± 0.06 3.10 ± 0.07    512.58 ± 11.52 0.36 

PDI 2.64 ± 1.02 13.07 ±	0.004 3.11 ± 0.048 502.62  ± 4.72 0.41 

MCC 66.76 ± 3.57 12.96 ± 0.007 3.05 ± 0.08   507.08  ± 12.05 10.75 
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8.4.4 Evaluation of Fe and Zn excipient tablets 

 

It is evident, from the preceding sections of this study and also widely accepted, that particle 

size and shape, bulking density/surface area can regulate the tableting properties (e.g. 

tabletability and flowability) of intact bitter cassava PD. Thus, an understanding of the prior 

proper processing of the excipient before incorporation of Fe and zinc was necessary. 

However, since the purpose of the study was to assess the impact of intact bitter cassava and 

SRRC on the development of Fe and Zn excipients, only granulation was carried out on the 

intact bitter cassava (PD).  

An example of excipient tablet prototypes with and without Fe and Zin produced from intact 

bitter cassava PD are shown in Fig. 8.3. 

 

 
 
Fig 8.3.  Excipient tablet prototypes used in in vitro dissolution: a) from PDp; and b) PDI, without 

Fe/Zn; c) Fe and Zn; d) combined Fe and Zn; and e) MCC.  
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8.4.5 Analysis of dissolution and release mechanisms 

 

The results of the release process of intact bitter cassava PD is presented in Fig. 8.4, showing 

that dissolution time had a highly significant (p ≤ 0.05) positive impact on Fe and Zn release. 

This result is expected and attributed to the fast release matrices. Consistently, Zn had a 

preferential fast release to Fe as far as excipient weights, combined form and solution pH 

environment were taken into consideration.  To gain better understanding of the release 

nature of the excipient matrix, the dissolution data was fitted to model equations, and the 

results are presented in Table 8.5 and Fig. 8.5. In all cases, the results correlate inversely with 

excipient mass, and to a less extent when Fe and Zinc were combined in a single tablet 

regardless of the weight. By contrast, Fe and Zn were better released in acidic environment 

(pH 1.2) than the alkaline equivalent (pH 6.8). Nonetheless, taken together, Fe and Zn were 

highly released in solution medium as verified by their high dissolution efficiency. 

 
Fig 8.4.  Effect of the factors solution pH (pH; 1), weight (Wt; 2), and time (T; 3) on dissolution of 

Fe/Zn from intact bitter cassava PD tablet excipients. 

 

Regardless of the weight and solution pH, the release exponent, n values demonstrate that the 

dissolution of Fe and Zn from cassava PD matrix seem to be governed by case II and super 

case II viscoelastic relaxation mechanism. It is well-known that a desirable mechanism for 

any release process in various applications should provide zero-order release performance, 

with n falling around one (n = 1) (Lager & Peppas, 1981; Ritger & Peppas, 1987).  
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Apart from dissolution due to diffusion, the fast release rates observed in this study could be 

attributed to bitter cassava PD excipient matrix erosion. As shown in Table 8.5, erosion rates 

(k0) seem to be slightly higher compared to k0 in drug dosage forms (Dürig, Venkatesh, & 

Fassihi, 1999) and elsewhere (Nep, Asare-Addo, Ghori, Conway, & Smith, 2015).  Although 

erosion phenomena is exploited in drug dosage forms for the design of oral extended-release, 

it might be of advantage when applied in micronutrient matrices designed specifically with 

heterogeneous surfaces for fast releases. In this study, surface heterogeneity seemed not to be 

the major contributor of erosion since the tablets produced had smooth surfaces (Fig. 8.3).  

The high erosion rates might be also due to ability of cassava PD to gel quickly, swelled and 

released the micronutrients as fast as it could. While swelling rate was not determined in this 

study, the slightly higher erosion values could explain the swelling ability of the tablet 

excipients. 

 

While there seemed to be no visible heterogeneous surfaces, it seemed to indicate that 

heterogeneity could be localised within the internal parts of the tablet. As shown in Table 8.5, 

the slightly higher weight-dependence loosening with 500 mg than for 250 and 100 mg might 

suggest presence of porous, streaks or crevices with increased solids in the matrix. It might be 

expected that spaces within the matrix would lead to fast surface erosion by reducing solvent 

diffusion pathways. This was not likely with intact bitter cassava PD since there is no 

correlation in the erosion and loosening constants (Table 8.5). This suggests that the fast 

releases could be a function of swelling of the tablet matrices or due to bulk erosion. 

Additionally, in comparison to MCC, it could be hypothesized that the more Powderly PDI, 

with less porous spaces would form thick gels inside its matrix and delay fast internal 

erosion. However, this was not possible with fast release rates observed. 

Thus, it can be concluded here that if the SRRC processing conditions of intact bitter cassava 

PD could be regulated to include tailored process for tablets, then it would be possible to 

balance rate constants, leading to acquiring desired release rates. 



Chapter 8. Sustainable biomaterials recovered from waste bitter cassava. Part 1. Application in nutraceutical excipient tablet carrier 

210 
 
 

 

Table 8.5.  Fitting of intact bitter cassava PD release data to model equations 

 

Excipient system Tablet 

mass, mg 

Solvent 

pH 

Total mass 

dissolved 

Rate constant, k Release 

exponent (n) 

Dissolution 

efficiency, 

% 

R2 

    1st Order Erosion Loosening    

 

Cassava PD/Iron 

 

100 

250 

500 

 

1.2 

 

49.19 ± 0.05 

 

0.017 

 

1.121 

 

0.183 

 

0.865 

 

96 

 

0.922  

46.85 ± 0.04 0.016 0.455 0.172 0.866 92 0.913 

39.40 ± 0.44 0.029 0.285 0.227 0.889 76 0.948 

6.8 42.30 ± 0.06 0.110 0.914 0.482 1.271 80 0.866 

41.76 ± 0.31 0.111 0.958 0.478 1.273 78 0.864 

36.81 ± 0.12 0.136 1.810 0.434 1.064 70 0.932 

Cassava PD/Iron in 

Zinc matrix 

 

100 

250 

500 

1.2 44.58 ± 0.05 0.022 0.371 0.206 0.884 88 0.971 

43.90 ± 0.00 0.021 0.380 0.198 0.919 86 0.989 

36.88 ± 0.03 0.078 0.350 0.371 1.033 80 0.949 

6.8 42.80 ± 0.01 0.024 0.349 0.207 0.908 81 0.986 

42.43 ± 0.18 0.024 0.343 0.208 0.893 68 0.982 

34.99 ± 0.02 0.095 0.792 0.369 0.920 65 0.980 

Cassava/Zinc  1.2 24.87 ± 0.03 0.009 0.876 0.103 1.001 98 0.948 
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100 

250 

500 

24.93 ± 0.02 0.010 0.611 0.117 0.990 96 0.980 

24.21 ± 0.02 0.015 0.498 0.157 1.014 90 0.964 

6.8 22.49 ± 0.02 0.011 0.593 0.112 0.966 86 0.946 

22.29 ± 0.01 0.010 0.541 0.110 0.893 84 0.926 

20.20 ± 0.02 0.001 0.468 0.114 0.681 74 0.889 

Cassava /Zinc in 

Iron matrix 

 

100 

250 

500 

1.2 23.62 ± 0.02 0.017 0.449 0.169 1.015 94 0.941 

23.41 ± 0.02 0.018 0.372 0.177 0.988 92 0.960 

21.20 ± 0.01 0.018 0.379 0.160 1.009 84 0.946 

6.8 22.49 ± 0.05 0.022 0.303 0.208 0.898 90 0.971 

22.18 ± 0.02 0.021 0.454 0.203 0.929 89 0.964 

19.19 ± 0.01 0.112 0.623 0.212 0.888 76 0.950 
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Fig 8.5.  Rate profiles of Fe/Zn release from intact bitter cassava PD excipient. Sample aliquots taken 

from the solution (and replaced with equal amounts) at specified intervals, and absorbance 

read. 

 

The coefficient of determination, R2 represents means for all the model fitted. With all R2 

values around 0.900, and this shows a good fitting, and is an indication that they explain the 

Fe-Zn phenomena from intact bitter cassava PD. Similarly, as exhibited by profile rates (Fig. 

8.5), the dissolution efficiency for Fe and Zn was higher for pH 1.2 than in the pH 6.8. In 

particular, low-weight tablets demonstrated higher dissolution efficiency (DE) than for higher 

weight ones. Generally, the DE for pH 12-based matrices were within and above the 

acceptance dissolution limit is, t45 ≥ 80% (Saccone, Tessore, Olivera, & Meneces, 2004). The 
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Fe and Zn micronutrients were incorporated in the tablets in the form of sulphate and acetate, 

respectively, as they are presented in the body. Ionisation of these nutrients usually occurs 

when pH of the dissolution is lower (Sharp & Srai, 2007). This probably explains the 

relatively higher release rates of Fe and Zn in intact bitter cassava PD matrices in solvent at 

pH 1.2 in contrast to pH 6.8. 

 

Conclusion 

 

Intact bitter cassava (IBC) polysaccharide-rich derivatives, produced with simultaneous 

release recovery cyanogenesis (SRRC), were investigated as potential nutraceutical tablet 

excipient for fast delivery of micronutrients Iron and zinc. The tablets were prepared from 

peeled and intact bitter cassava powders, based on a preliminary screening designed to select 

the powder derivative, with best tableting properties, capable of formulating nutraceutical 

excipients for fast Fe and Zn delivery. Intact bitter cassava PD is a better potential 

biomaterial with superior tableting properties than one obtained from peeled equivalent, and 

also comparable to known microcrystalline cellulose. The IBC is endowed with properties 

capable of producing nutraceutical excipients for fast delivery systems as demonstrated in the 

fast delivery of Fe and Zn in acidic and neutral pH.  

The SRRC greatly enhances the tableting properties of IBC PD but cannot alone deliver 

requisite conditions for full tableting; there is need to further reinforcement PD with standard 

tableting processes to improve flowability and tableting capacity. Using the preliminary 

approach of obtaining SRRC-processed powder resulted in effective enhancement of 

nutraceutical tablet dissolution properties and allowed fast and full releases of Iron and zinc 

within 30 to 45 min, across all tablet weights. 

Overall, this study has demonstrated the potential of intact bitter cassava (IBC) 

polysaccharide-rich derivatives as an excipient that can enhance fast releases of Iron and zinc. 

Furthermore, the preliminary strategy of producing the material with SRRC can be employed 

in production of starting materials meant for developing fast release excipient tablets. The 

recovered biomaterial from waste cassava may provide broader applications as potential 

alternative nutraceutical excipients. 
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Chapter 9. Bitter Cassava Polysaccharide-rich Derivatives as Thymol-encapsulated 

Coatings in Antifungal Active packaging of Perishable Strawberries 

 

Abstract 

 

Natural-sourced polysaccharides can improve the stability and functionality of plant bioactive 

extractive carrier coating dispersions by creating a protective covering layer around them. 

Hypothetically, the encapsulation characteristics of the coating matrices can be regulated by 

developing them using low-cost and energy-efficient biopolymers rather than assembling 

them from uncostly multiple enhancer chemicals and polysaccharides. The objective of this 

study was to evaluate the capacity of intact bitter cassava polysaccharide-rich derivatives 

(PD) to encapsulate thymol effectively, and evaluate their antifungal effect and strength on 

stored strawberries using qualitative methods. Four coatings were formulated with intact 

bitter cassava polysaccharide-rich derivative (2% w/v), glycerol (40% w/w) and thymol 

(0.25, 0.5, 0.75 and 1.0 % w/v), and analysed by their encapsulation efficiency, permeability 

to water vapour, surface energy and wetting, and antifungal activity. All the four coatings had 

higher encapsulation efficiency (> 95%), which was concentration-dependent. Coating 

permeability to water vapour was in the range of 4.89-0.02 g mm / (M² day kPa), and was 

inversely proportional to coating concentration. Coating wettability occurred at medium to 

high contact angles (88.71-111.26⁰) and decreased as thymol concentration increased, and 

this facilitated better and smooth coating of the strawberries. Coatings demonstrated efficient 

antifungal activity in strawberries, with mould-growth inhibition reaching beyond 14 days of 

storage.  

These results have significant implications for the design of antifungal systems based on 

intact bitter cassava/natural bioactive-coating dispersions. 

 

Keywords:  Bitter cassava; Coating; Thymol-encapsulation; Antifungal; Strawberries 
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9.1 Introduction 

 

The importance of strawberry fruits as valuable sources of vitamin C, high dietary fibre and 

potent antioxidant in the daily diets of populations globally cannot be overstated. However, 

common spoilage issues, attributed to mainly fast deterioration, have been reported as serious 

and costly problems for strawberries in the supply chain, and specifically during 

transportation and storage (Chen & Martín-belloso, 2009). The fast loss of quality is 

associated with high volatilisation of the main components due to the delicate texture, coated 

by a very thin cuticle and presenting high susceptibility to physical damage, heterogeneity in 

firmness and a clear relationship between skin strength or fruit firmness and susceptibility to 

pathogen infection (Dong et al., 2013; Ferreira, Sargent, Brecht, & Chandler, 2008). Apart 

from loss of volatile compounds, strawberries are susceptible to a large variety of 

phytopathogenic organisms (Amil-Ruiz, Blanco-Portales, Munoz-Blanco, & Caballero, 

2011). Fungi can directly penetrate strawberry fruit epidermal cells, or spread hyphae on top 

of, between or through cells. Pathogenic and symbiotic fungi and oomycetes ultimately 

invaginate feeding structures into the host cell plasma membrane, and thus cause fast spoilage 

particularly in conducive storage conditions. By contrast, strawberries, possess innate sources 

of inherited resistance to diseases that make them respond efficiently to pathogens due to 

induced mechanisms, which include cell wall reinforcement, production of reactive oxygen 

species, phytoalexin generation and pathogenesis-related protein accumulation (Amil-Ruiz et 

al., 2011). Nonetheless, in today’s increased volumes and distribution of commercial 

strawberries, post-process contaminations that accrue from fungal spore-prone airborne and 

contact surface environments can override the naturally-inherent defence mechanisms. 

Ultimately, the control of fungal contamination of strawberry is very crucial. 

 

Non-biodegradable plastic films have been, and are still, the main packaging protectors for 

most commercial berries, intended to maintain the processing benefits post-process and 

distribution chain wholesomeness of food products. These films are use-limited due to: (i) 

being non-degradable; (ii) the fact that fungal contamination could be intensified by moisture 

condensation on product and package surfaces that favour mould growth, (iii) inability to 

protect strawberries while exposed to conditions that high temperatures and possibly anoxia 

conditions in-package. Thus, proactive technological control measures are needed to avoid 

fungal contamination and create avenues for extending strawberries shelf-life, in particular 



Chapter 9. Sustainable biomaterials recovered from waste bitter cassava. Part 1. Application in active packaging 

216 
 

 

those that are subjected to high temperatures before use. In addition, packaging technology 

must balance food protection with mainly energy and material costs, social and 

environmental sensitivities, and regulated pollutants and disposed wastes (Marsh & Bugusu, 

2007). 

 

Plant bioactive extractives have known outstanding capabilities to preserve most food 

products, with potential to increase their shelf-life while in storage and distribution (Araújo & 

Bauab, 2012; Cox, 2012; Palou, Valencia-Chamorro, & Pérez-Gago, 2015; Sultanbawa, 

2011; Valdés, Mellinas, Ramos, Garrigós, & Jiménez, 2014). Thymol is among the most 

popular plant essential oil bioactives for provision of antimicrobial and antioxidant properties 

(Ahmad, Khan, Yousuf, Khan, & Manzoor, 2010; Ezzat Abd El-Hack et al., 2016; Karoui, 

Msaada, Abderrabba, & Marzouk, 2016; Nostro et al., 2007; Šegvić Klarić, Kosalec, 

Mastelić, Piecková, & Pepeljnak, 2007; Zarrini, Delgosha, Moghaddam, & Shahverdi, 2010). 

Because thymol is known for its post-antimicrobial importance (Zarrini et al., 2010), this 

makes it suitable for use in fast spoiling strawberries that are destined for extended storage 

and transportation outside the cold chain. Unfortunately, thymol is limited in its application 

due to its low solubility character in water (Bilia et al., 2014; Shah, Davidson, & Zhong, 

2012). As most matrices use water for their source of initial solutions, the need for alternative 

efficient thymol carriers has become a priority. Among the alternatives, Nano carriers (NC) 

have gained a lot of interest, and their use as encapsulating media is currently an exciting 

alternative strategy (Bilenler, Gokbulut, Sislioglu, & Karabulut, 2015; Blanco-Padilla, Soto, 

Hernandez Iturriaga, & Mendoza, 2014). The NC have advantages of ensuring antimicrobials 

security and compatibility in hostile environments, thereby enhancing their activity through 

controlled delivery and passive cellular absorption mechanism improvement (Blanco-Padilla 

et al., 2014).  

 

Several encapsulating matrices for the improvement of the functional bioactive incorporation, 

biocompatibility and stability have been reported, such as: i) food grade colloidal delivery 

systems comprising of small lipid, phospholipid, and biopolymer particles; and ii) small 

particle colloidal excipient systems (Z. Zhang et al., 2016). The potential of colloidal systems 

to improve bioavailability with curcumin (Ting, Jiang, Ho, & Huang, 2014), stability and 

retention of chitosan films containing basil and thyme essential oil (Perdones, Chiralt, & 

Vargas, 2016) and thymol/carvacrol-encapsulated zein nanoparticles (Wu, Luo, & Wang, 

2012) have been demonstrated. However, studies to validate these carriers/encapsulations of 



Chapter 9. Sustainable biomaterials recovered from waste bitter cassava. Part 1. Application in active packaging 

217 
 

 

antimicrobials and antioxidants are mainly limited to development, characterisations, 

suggestions and recommendations. Their application in active packaging of specific foods is 

also not significant. Besides, most of the carriers require extra enhancer chemicals and 

modifications in processes to make them soluble in encapsulations, and this might bring cost 

and energy implications in their development.  

 

Intact bitter cassava polysaccharide-rich derivatives (PD) are low-cost and energy-efficient 

materials prepared via improved simultaneous release recovery cyanogenesis, which have 

potential application in food packaging due to their film-forming ability (Tumwesigye, 

Oliveira, & Sousa-Gallagher, 2016). However, PD materials have not be investigated for their 

suitability as carriers of antimicrobial bioactives in active packaging of foods. Their 

investigations as coating encapsulations of thymol in antifungal protection of strawberries 

may provide an alternative material for active packaging of food products. Furthermore, the 

fragility of strawberries to fast spoilage provides the ideal test or avenue to determine the 

effectiveness and performance of PD as suitable antifungal coatings.  

 

The current study was intended to evaluate the capacity of intact bitter cassava 

polysaccharide-rich derivatives (PD) to encapsulate thymol effectively, and evaluate their 

antifungal effect and strength on stored strawberries using qualitative methods. Furthermore, 

ability of PD-thymol coatings as antioxidant material, their association with permeability to 

water vapour, and surface hydrophilicity/hydrophobicity were investigated. If the PD 

successively encapsulated more than 50% of thymol loaded, and protect highly-prone fungal 

products including those that rapidly undergo oxidation on exposure to air, the coating would 

be a novel matrix vehicle to encapsulate bioactive compounds for enhanced bioavailability, 

extended shelf-stability and controlled release. 

 

9.2 Materials and methods 

 

9.2.1 Materials 

 

Intact bitter cassava was obtained from Northern Uganda, and its derivative saccharides, 

consisting of mainly starch, holocellulose, lignin, and traces of other chemicals, prepared as 

described in Tumwesigye, Oliveira, & Sousa-Gallagher, (2016). Thymol (≥ 99.0%), and 
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Ethyl acetate (anhydrous, 99.8%) were purchased from Sigma Ireland. All chemicals were 

used as received without further purification. 

 

9.2.2 Preparation of PD-thymol coating dispersions 

 

Preparation of PD-thymol coating entailed dispersing thymol (0.25, 0.5, 0.75 and 1.0 % w/v) 

into 100 ml prepared intact bitter cassava-glycerol solutions. Intact bitter cassava PD (2% 

w/v) and glycerol (40% w/w %) were mixed while stirring, heated to 70⁰C for 20 min and 

cooled back to 37-400C using a trough of cold water. Thymol was added and the dispersion 

stirred at high shear speed (1,000 rpm) by overhead stirrer (Eurostar IKA Labortechnik, 

Germany) for 10 min. The PD and glycerol proportions were based on the optimised 

formulation for the film production as described in Tumwesigye, Montañez, Oliveira, & 

Sousa-Gallagher, (2016b). The control sample containing only PD (2% w/v) and glycerol 

(40% w/w %) was also prepared.  

 

9.2.3 Coating characterisation  

 

8.4.5.1 9.2.3.1 Thymol loading and encapsulation capacity 

 

Thymol-loaded dispersion was dried at 250C for 9 hours, and milled using IKA 

Yellowline(R) A10 Analytical Grinder (California, USA) to obtain a powder. The powder (10 

mg) was mixed with ethyl acetate (2 ml) under constant stirring in a shaking bath at 37 0C for 

I hour. Thymol has been reported to dissolve in ethyl acetate (Wu et al., 2012). The 

undissolved solids were removed during centrifugation at 3000 rpm for 15 min to obtain the 

supernatant. Concurrently, a solution containing pure thymol was dissolved in ethyl acetate, 

diluted into 6 serial solutions and used to obtain the standard curve at 274 nm (Norwitz 

&Keliher, 1986), defined by Eqn. 9.1. 

 

A#$% = s ∗ T − C                   9.1 

 

where, A274, the absorbance at 274 nm, s, slope from the standard curve of serial dilutions, T, 

the thymol concentration (mg/g) and C, the intercept. 
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Thymol concentration (T) was determined by measuring the absorbance of the supernatant in 

a UV-vis spectrophotometer at 274 nm and calculated using the standard curve (Eqn. 9.1). 

The loading capacity was calculated as the encapsulated thymol weight fraction of the total 

solids, and reported as percentage. 

The encapsulation capacity was calculated as the ratio of encapsulated thymol to the original 

thymol incorporated in the PD matrix, and reported as percentage. 

 

8.4.5.2 9.2.3.2 Water vapour permeability 

 

The permeability of the coating to water vapour was determined as described in Tumwesigye 

et al., 2016b) without modifications. Water vapour permeability (WVP) was determined 

gravimetrically at 38 °C, 95 % RH according to ASTM E96-05 (2005) method. Films for 

WVP were obtained from the coating dispersion, cast on 8.4-cm diameter dishes and dried at 

25 0C, 9h, together with coated strawberries (subsection 2.4). Each previously conditioned 

(54 % RH, 23 ± 2 °C, at least 48 h) film was carefully positioned between acrylic permeation 

cell containing CaCl2 (0 % RH) and enclosed in a humidity-controlled plastic container 

partially filled with 1000 mL of KNO3 salt solution, corresponding to a relative humidity of 

95 %. The container was stored in temperature controlled incubator at 38 °C, and cell weight 

gain was recorded every 2 h for 10 h and used for WVP calculations. WVP was calculated 

using Eqn. 9.2. 

 

WVP = ḿ0
12 345637

                   9.2 

 

where ḿ, mass flow rate (g/day); δ thickness (mm); A, cross-sectional area (m2); P, saturation 

partial pressure at 38 °C (kPa) and r95− r0, relative humidity of outside environment (95 %) 

and cell (0 %). All tests were conducted in triplicate and mean values were used for 

calculating WVP. 

 

8.4.5.3 9.2.3.3 Coating surface free energy and wettability 

 

Coating surface free energy and wettability (SFEW) were assessed by determining the 

contact angle according to Tumwesigye et al., (2016a) without modifications. Measurement 

of contact angle (CA) was achieved using the sessile drop method by Optical tensiometer 
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(Theta, BiolinScientific Finland) at 25⁰C, 50% RH. The Theta was equipped with a liquid 

dispenser holder fitted with a 0.5 mm diameter precision microsyringe steel needle, and 

OneAttension software for drop shape analysis and live measurements. A rectangular coating 

film strip (2 cm x 2 cm) was mounted on a pre-cleaned glass slide covered with double-sided 

tape, then placed on a horizontal holder at 90⁰C to enable clear observation of film surface 

and cross-section. In addition to ensure that the correct CA was measured, a film strip was 

raised a bit from the surface of the slide. The syringe was positioned vertically 10 mm from 

the film surface and 2 mL deionized water drop automatically dispensed (1.0 ml s-1) on the 

film. The measurements lasted 180 s and data was analysed for contact angle (θ). All films 

were conditioned (23 ± 2 ⁰C, 50% RH, 48 h) prior to measurements and five measurements 

were carried out. Drop wetting, spreading and beading/shrinking away gives CA of 0, 0–90 

and >90 ⁰C respectively.  

A CA of 00C; 0 < CA <90°C; 900C ≤ CA < 1800C; and CA = 1800C describe perfectly 

wetting (strong interaction); high wettability (strong/weak interaction); low wettability (weak 

interaction; and perfectly non-wetting (weakest interaction) respectively. Super hydrophobic 

contact surfaces (CA >150°C) demonstrates no contact between the liquid drop and the 

surface (Zheng & Lü, 2014). 

 

9.2.4 Preparation of strawberry samples for coating, and antifungal analysis 

 

8.4.5.4 9.2.4.1 Strawberry preparation and coating 

 

Freshly purchased strawberries were cleaned of any dirt, disinfected and devoid of free 

surface water using a filter paper (Whatman no.2). Cleaned strawberries were dipped in 

freshly prepared PD-thymol coating dispersions (5 min), and air-dried (250C), while 

suspended for 6 h. A sample of uncoated strawberry itself was concurrently prepared, and 

served as a control. The triplicates of each sample were prepared. 

 

8.4.5.5 9.2.4.2 Antifungal analysis  

 

The antifungal impact of PD-thymol coatings was achieved qualitatively by observing the 

mould growth overtime on strawberries kept at 95% RH and 250C. In order to ensure the 

same mould inoculum for all the samples, strawberries were placed on dishes and kept in 
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controlled chambers. Photographs were taken on the samples every day until 21 days of 

storage. To ensure that the coated samples were exposed to high mould inoculum, they were 

kept together with those showing increase mould growth. 

 

 

9.3 Results and discussion 

 

9.3.1 Influence of bitter cassava and SRRC on thymol loading, encapsulation  

efficiency and stability 

 

The PD-thymol coating dispersion properties at different thymol loading concentrations are 

presented in Table 9.1, showing that, regardless of loading level, all the dispersions 

demonstrated higher encapsulation efficiency, with over 95% explained by encapsulation 

technique. The encapsulation capacity (EC) showed proportionality to the loading capacity 

(LC), which was also concentration-dependent. The higher thymol entrapment for all loading 

levels might be explained by the steric hindrance against thymol droplet aggregation that 

could have been provided by PD polysaccharide moiety, thereby improving dispersions 

stability. Thymol is a hydrophobic compound only slightly soluble in water at neutral pH 

conditions provided by cassava PD, and in practice, overcoming solubility of thymol into 

cassava PD would require initial dispersion in an emulsifier. Unlike most polysaccharide 

emulsion systems which require emulsifiers in their industrial application (Glenn et al., 2010; 

Perdones et al., 2016) and ionic gelation (Avadi et al., 2010), strikingly, in this study, the 

cassava PD-thymol coating dispersion exhibited conditions of a perfect uniform emulsion 

system. Specifically, the presence of pectin and perhaps lignin in the PD powder matrix 

extracted at 12 months could account for the modulation of the emulsification to form stable 

dispersions. On the other, the pores created by inclusion of other polysaccharides in addition 

to could have facilitated absorption of thymol, and reduced evaporative loss of thymol during 

the drying of the PD-thymol coating dispersion.  

 

Improved pore structures in PD are not only crucial permeation to water vapour and gases but 

the provision of a large surface area throughout the internal matrix compared to the external 

surfaces. This might also be the for better thymol sequestration within the matrix, and thus 

the degree of particle agglomeration and facilitating dispersion (Glenn et al., 2010).  It can be 
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concluded that the inclusion of thymol provided strong cassava PD adsorption rather than 

chemical bonding, although weak bonding of thymol OH groups with the polymer could be 

possible. 

 

9.3.2 Influence of PD-thymol coating on permeation to water vapour 

 

The permeability to water vapour of cassava PD-thymol coating showed an inverse 

association with thymol concentration (Table 9.1). The trend observed could be attributed to 

reduced permeation voids resulting from occupation of the porous area by thymol. The slight 

decrease in water permeation imply that this could support reduced moisture loss of coated 

strawberries. Indeed, this was supported by low moisture values observed during the 

antifungal storage studies. Generally, all the samples showed low water permeation values 

compared to previous studies on intact bitter cassava films (Tumwesigye et al., 2016a). 

 

Table 9.1.  The impact of different thymol contents on coating loading and characteristics  

 

Coating 
ET, 

mg/g 

LC, 

% 

EC, 

% 

WVP, g mm 

/(M2.day.kPa) 
CA, ⁰ 

Cassava PD only - - - 4.89 88.71 

Cassava PD with thymol @ 0.25% w/v 0.10 7.4 95.8 3.89 95.48 

Cassava PD with thymol @ 0.5% w/v 0.10 14.0 98.1 2.08 101.44 

Cassava PD with thymol @ 0.75% w/v 0.09 19.8 98.9 1.66 111.26 

Cassava PD with thymol @ 1.0% w/v 0.09 24.8 99.1 0.02 110.07 
 

ET, encapsulated thymol; LC, loading capacity; EC, encapsulation efficiency, WVP, water vapour permeability, 

CA, contact angle 

 

9.3.3 Effect thymol loading on coating surface free energy and wettability 

 

To enhance the antifungal performances of products, the developed coatings should be 

compatible with the product surfaces in order to spread evenly and coat the product. The 

compatibility is assessed by the ability of the coating to enhance or reduce surface wettability 

(SW). In this study, SW was defined by the contact angle (Table 9.1, Fig 9.1).  As was 
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observed, the contact angle (CA) increased as thymol concentration in the PD matrix 

increased. Since the degree of surface wetting is an inverse of the size of the CA, it can be 

said that the wettability decreased as thymol concentration increased. In spite, however, of 

the surface wetting reduction, all the coating samples still were within the interface of 

high/low wettability (defined by mid-strength solid/liquid interaction). This might explain the 

better and smooth coating of the strawberries observed (Fig 9.2 a). Unlike ideal surfaces 

which are perfectly smooth and chemically homogeneous, strawberries have somewhat rugged 

surface, and thus the results observed is most likely due to their structural topography.  

 

 

 
Fig 9.1.   Measured contact angles for different thymol loadings: a) control (D0.0T); b) 0.25% Thymol 

(D.25T); c) 0.5% Thymol (D.5T); d) 0.75% Thymol (D.75T); and e) 1.0% Thymol (D1.0T). 

 

9.3.4 Impact of PD-thymol coating on mould growth inhibition in storage strawberries 

 

The qualitative results of the mould growth-inhibition by PD-thymol coating on strawberries 

is illustrated in Fig 9.2b, showing no inhibition on uncoated samples and significant 

inhibition on coated ones during the 14 days in storage. The two-point (0 day & 14 day) 
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experiment was used to illustrate the notable inhibition, nonetheless, uncoated strawberries 

exhibited mould growth after 48 hours of storage at 250C, 95% RH.  

 

 

 
 
Fig 9.2.  An illustrated example of uniform distribution of coating (a) and uncoated (control) and 

coated with 1.0% Thymol (b) strawberries showing the effect of antifungal activitity. 

 

Qualitative tests give a general indication of a cause, which can be validated with the 

quantitative tests. Fortunately, in this study, the use of qualitative method is in line with the 

commercial consumer’s initial perception of the spoilage of strawberries. 

The significant growth inhibition observed with coated strawberries could be associated with 

uniformity of coating (Fig 9.2a), but also could be attributed to the better entrapment of 

thymol in the PD matrix.   Equally, the reduced permeation to water vapour due to more 

hydrophobicity in the coatings might also improve the coatings antifungal capacity. Thus, 

quantitative studies are essential to analyse the antifungal activity of the coatings, and the 

spoilage fungi species inhibition, as a function of the thymol loading levels. 
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Conclusion 
 

Coatings formulated with four intact bitter cassava polysaccharide-rich derivatives and 

thymol provided exciting results with respect to their encapsulation capacity and stability. All 

of them exhibited very efficient encapsulation capacity, as shown by higher scores above 

95%. Moreover, the steric hindrance phenomenon against thymol droplet aggregation 

provided the necessary dispersions’ stability and uniformity, which governed overall coating 

patterns. 

The coating permeability to water vapour and surface wetting for all concentration levels 

were intermediate and slightly above medium. A very perfect antifungal inhibition was found 

for strawberry-coated surfaces, with the result that the fruits remained uninfected beyond 14 

days, which was greatly dependent on the stability and reasonable uniformity of surface-

wetting during coating. 

The stability of the coating, supported by medium water vapour permeability at the 

hydrophobic-hydrophilic interface and the perfect antifungal ability, can allow their use in 

broad spectrum antimicrobial applications in commercial systems. These results have 

significant implications for the design of antifungal systems based on intact bitter 

cassava/natural bioactive-coating dispersions. Nonetheless, further investigations are needed 

to address the quantitative analysis, and gain insights into the specific fungi, before full 

application of the coatings. 
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General conclusion, outcomes and recommendations for future work 

 

This section highlights the main conclusion that can be drawn from this study, and suggest 

the future perspectives, with the objective to augment knowledge in the broad area of cassava 

biobased material research and application. 

 

 General conclusion 

 

Sweet cassava has been extensively studied, mostly in the development and improvement of 

edible films and coatings. The production of its derivative starch using conventional methods 

is associated with environmental wastes. Different approaches such as fillers, bioactive 

compounds and chemical modifications have been used to improve structural and functional 

properties of biobased materials, mainly starch. This has escalated the costs and energy of 

material production. Together with absence of evaluations for intended application conditions 

such as in-package environment under real conditions, the exploration of these materials in 

commercial use, mainly food packaging, has been challenging. Notwithstanding the 

challenges, there is a great potential of cassava biobased materials in wide-range applications. 

In particular, if holistic approaches are integrated in the material development towards 

applications. 

 

Overall, the work in this research focused on developing an integrated sustainable process 

system for cassava biobased materials intended for broad range applications. Specifically, the 

research was concentrated on developing an improved downstream cassava processing 

methodology, known as simultaneous release recovery cyanogenesis (SRRC). Using SRRC, 

the utilisation of intact bitter cassava has assisted exploitation of intrinsic advantages inherent 

in cassava for modifying and optimising its polysaccharide-rich derivatives for 

multifunctional applications in packaging films, coatings as well as nutraceuticals. Further, 

this created a generic technique/methodology that can be tailored to specific product 

processing requirements. The selection of SRRC was based on the understanding the 

challenges faced by conventional methodologies to minimise waste, create quality desired 

cassava biomaterials, and ensure uniform and polymeric materials for tailor-made 

applications. 
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Accordingly, intact bitter cassava (IBC) was studied using SRRC, and compared with the 

peeled counterpart, which is traditionally used in the development of starch-based products. It 

was found that IBC and SRRC can be used as sustainable, safe, integrative process solution 

for high value-added product production from low-cost biobased materials. This resulted in 

significant waste reduction, safe biopolymer with distinctly white material suitable for any 

application. Further to this, demonstration of the potential application of IBC derivatives for 

development of transparent and flexible films was shown. Using SRRC and intact bitter 

cassava proved that there is no need for peeling prior to processing, and this could save 

commitment of human and monetary resources and time resulting in cheap materials for food 

and non-food applications. 

 

A standardised simple, integrated methodology for efficient and low-cost production of 

biopolymer derivatives (BPD) from novel intact bitter cassava was successfully developed. 

The methodology showed unique advantages of minimising wastes and providing higher 

quantities of derivative material compared to a commercial method using sweet cassava. The 

methodology showed promise as a sustainable choice for use in industrial materials due to the 

shortening of derivative preparation steps, production, reinforcements and modifications, as 

separate entities that increase energy. Furthermore, the methodology produced derivatives 

with desired properties such as uniform microstructure, high thermal stability, and good 

barrier properties with potential broad range of applications.  

 

The transport phenomenon of fluids and solvents in humidity- temperature-stressed intact 

bitter cassava (IBC) films was assessed by qualitative and mechanistic techniques, and 

related to the structural characteristics of interactions. Results showed that (IBC) films 

possessed wide variable permeability to fluids due to extensive pore size, which can be 

explored for packaging a broad spectrum of products. Peleg, modified BET, Oswin and 

Forran-Fontan equations were shown as the best models to describe sorption behaviour of 

IBC films. Temperature and humidity have more impact on water vapour and oxygen 

permeation through IBC films. Thus, care need to be taken to avoid exposure at high relative 

humidity. The mass transfer mechanism of water through IBC films at 75% RH and 95% RH 

was found to obey case II non-Fickian pattern, which is a good indication of commercial use 

since water diffusion in most existing commercial materials follow a non-Fickian trend.  

Similarly, the mass transfer mechanism by toluene and paraffin oil followed Fickian 

diffusion, meant that the IBC films supports their use in commercial settings. The results 
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proved that novel BC and SRRC have a significant impact on the IBC films that enhance 

solvents’ ability to induce structural changes in IBC films. Because the integrity of the 

cassava biobased film packages are dependent on the host environment, extreme care should 

be ensured to minimise environment effects in the distribution chain. 

 

Packaging films were produced from intact bitter cassava, and optimised in order to obtain 

desirable properties. Desirability optimisation provided 2 % w/v cassava derivative, 40.0 % 

w/w glycerol, and 50°C drying temperature as ideal parameters for optimal film 

development. Optimal film properties are: 0.3 %; transparency, 3.4 %; solubility, 21.8 %; 

water-vapour-permeability, 4.2 gmm.M-2.day-1kPa-1; glass transition, 56°C; melting 

temperature, 212.6°C; tensile strength, 16.3 MPa; elongation, 133.3%; elastic modulus, 5.1 

MPa; puncture resistance, 57.9 J. With optimised parameters and properties, a set of 

empirical equations can be used to for tailoring films to specific packaging applications.  

 

A new sustainable approach for potential utilisation of cassava waste and reduction of their 

environment impact using an integrated seven unit process design was developed. Integrating 

models in the design demonstrated use of intact root and SRRC as an effective tool for green 

cassava production processes. Moreover, the integrated process design has the advantage of 

rational use of energy and water through reuse of wastewaters in the reactions and release 

processes. The strategy allowed integration of non-heat drying with laminar flow hood air 

systems in the design process. Thus, the integrated process design could be used as a green 

tool in production of cassava products with near zero environmental waste disposal.  It is a 

promising tool that can be used to improve small-to-medium-scale batch processing of 

cassava and deliver benefits to commercial trade and environment. 

 

An optimised, standardised and integrated engineering design structural framework for 

cassava biobased materials has been achieved. This will serve as a design model for disabling 

cassava toxicity, eliminating waste, providing inexpensive and energy-efficient material 

production, and ensuring sustainable systems for cassava biomaterial development.  

 

Application of biopolymer flexible films for the development of desired atmosphere 

packaging to extend shelf life of cherry tomatoes was demonstrated. The attainment of 

recommended equilibrium headspace O2 composition indicate that it is not critical to 

perforate IBC films during EMAP development. The significant unsettling of equilibrium 
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headspace O2 composition by temperature and RH suggest that care must be exercised when 

IBCF packages are placed under real conditions during the distribution chain. The optional 

requirement of perforations for IBC than OPP films is an advantage of these films to be 

deployed as alternative film packages for fresh produce. The targeted desirability value of 

3.73% headspace oxygen and delayed mould growth on tomatoes showed great capability for 

application of IBC film in EMAP designs of fresh produce.  

 

The study highlights potential of intact bitter cassava polysaccharide-rich derivatives (IBC 

PD) as an excipient that can enhance fast releases of Iron and zinc. The study showed that 

IBC PD possesses superior tableting properties than one obtained from peeled equivalent, and 

is comparable with commonly used microcrystalline cellulose. The recovered biomaterial 

from waste cassava may provide broader applications as potential alternative nutraceutical 

excipients. Furthermore, the IBC PD is compatible with acidic and neutral pH during the 

delivery of Fe and Zn, but cannot alone deliver requisite conditions for full tableting. Using 

SRRC-processed powder as tableting starting material greatly enhances dissolution system 

with fast and full releases of Iron and zinc within 30 to 45 min. The recovered biomaterial 

from waste cassava may provide broader applications as potential alternative nutraceutical 

excipients. 

 

Application of biopolymer coatings for antifungal active food packaging was demonstrated 

with four intact bitter cassava polysaccharide-rich derivatives (IBC PD). The coatings 

presented thymol encapsulation efficiency above 95%. The IBC PD provided better coating 

patterns due stable and uniform dispersions, and this resulted into better coating permeability 

to water vapour and surface wetting. As a result of stability and uniformity of dispersions, 

IBC PD coatings exhibited better antifungal inhibition beyond 14 days. This is an advantage 

to traders bearing in mind that non-coated strawberries subjected to real supply chain 

conditions might not last beyond 48 h. The stability of the coating, supported by medium 

water vapour permeability at the hydrophobic-hydrophilic interface and the perfect antifungal 

ability, can allow their use in broad spectrum antimicrobial applications in commercial 

systems. 

 

The results have significant implications for the design of antifungal systems based on intact 

bitter cassava/natural bioactive-coating dispersions. 

 



General conclusion and recommendations 
 

230 
 

 

Methodologies designed around standard integrated procedures, matching zero-based 

approach to contamination elimination, are novel strategies, and if they are used effectively 

and widely can provide better avenues to eliminate cassava wastes and recover BPD 

resources as sustainable biomaterials. 

 

Outcomes 

 

1. Mitigating the challenging issue of cyanogens in bitter cassava provides a promise for 

use in bioderivative development and other applications, but also a	paradigm	of 

economic and well-being of communities which use bitter cassava 

2. Intact bitter cassava use leads to zero waste, and will help to reshape the current style 

one-way processing designs into a circular designs modelled on nature's effective 

approaches. This will also benefit SME processing units achieve a local system that 

functions efficiently, sustains the environment, and delivers self-sufficiency. Moreover, 

this will lead to indirect waste elimination instead of waste management. 

3. Inclusion of indigenous cassava components as material reinforcements for 

bioderivatives 

4. The SRRC is a novel improvement approach to downstream processing of novel bio-

derived products  

5. Other potential applications:   

i. In proper by-product’s regulation for waste elimination, reduction in costs of waste 

manage and recycling, 

ii. Generally, in processes which require efficient use of energy resources, reduction in 

cost of production, and other product integration process designs; 

iii. Development of tailored materials for both food and non-food uses such as: 

iv. Edible and non-edible food packaging films and coatings; 

v. Biobased bags for waste management and replacement of food plastics in the market; 

vi. As ingredients in food industry and excipients in drug delivery;  

6. Ultimately, this has initiated a process which may lead to a wider utilisation in broad 

product research development. 	

7. Finally, the research contributes to scientific knowledge in material science and 

engineering process design. 
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Recommendations for future work 

The study demonstrated that the polysaccharide nature and composition of intact bitter 

cassava derivatives is crucial to customised functional application. Thus, the selection of 

bitter cassava should be revisited to address maturity, amount of its polysaccharides chemical 

composition determined, and further improvements in processing using SRRC.  In particular, 

the release stages, polysaccharides require further functionalisation or reduction in order to 

target the final functions of derivatives.  

Biobased materials prepared with intact bitter cassava showed great potential for broad range 

application in food and non-food, particularly for flexible food packaging materials, coatings 

for active packaging, and excipients for nutraceutical delivery. While the aim of this study 

was a proof of concept to develop film prototypes from intact bitter cassava, the film 

production could be potentially scale up in medium and high scale industrial production of 

biomaterials.  In addition, film individual unique properties such as reasonable mechanical 

strength, thermal stability, better sealability and resistant to water at low to medium relative 

humidity. These studies need further in-depth evaluations for their compliance, both in vitro 

and under supply chain conditions.  

 The standardised integrated methodology was found to match zero-based approach to 

contamination elimination when used effectively. In future, and as a follow-up to this study, 

the methodology can be studied for eliminating wastes and recovering resources as 

sustainable biomaterials in all systems that generate byproduct wastes to the environment. 

Optimisation of films by desirability provided a scope in which tailor-made films can be 

developed. These require further studies to validate them at commercial level in real 

conditions. 

The successful development of the integrated process design proved that the feasibility of 

using it in large scale processing can be possible. This would require further studies to 

improve the efficiency of the integrated process, perhaps using pinch analysis and 

mathematical optimisations. 

A broad range application potential of cassava biobased materials has been demonstrated. An 

example is the potential application of flexible packaging films in the design of equilibrium 

atmosphere packaging. Although the films showed compliance in recommended supply chain 

temperature of 10 ⁰C for fresh produce, they are prone to high relative humidity. Such 

conditions, referred to as “abuse” are more often encountered in the supply chain. Thus, 
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further studies on the validation of the impact of external environments on EMAP of IBCD 

are necessary. The integrity of the cassava biobased films will depend on the host 

environment, and maximum care should be ensured to minimise environment effects in the 

distribution chain. 

To ensure compliance of IBC films in the distribution chain, (i) thermal and structural tests 

should be a must in developing biobased materials; and (ii) validation of films in conditions 

for their targeted use should be taken as a priority. 

The compatibility of IBC films with EMAP design is good news for widening alternative 

materials for packaging fresh produce. But more research is needed to validate the desirable 

value under stress conditions of the supply chain. 

The SRRC-assisted production of biopolymer derivatives was found to be insufficient to 

produce materials for nutraceutical excipients, although SRRC provides an advantage of an 

alternative inexpensive starting material.  The deficits might be due to the way recovery 

stage, particularly drying, is done. Thus, there is need to further reinforcement PD with 

standard tableting processes to improve flowability and tableting capacity. This can be via 

controlled drying of derivatives using spray-drying techniques, and subsequent granulation 

should be investigated. 

The study demonstrated significant implications for the design of antifungal systems based on 

intact bitter cassava/natural bioactive-coating dispersions. Further investigations are needed 

to address the quantitative analysis, and gain insights into the specific fungi, before full 

application of the coatings. 

The film unique properties such as reasonable mechanical strength, thermal stability, better 

sealability and resistant to water at low to medium relative humidity should be explored and 

exploited for application of cassava biobased materials in packaging of dry products, 

biobased bags and shopping bags. These could have a bigger impact on the current challenges 

posed to the environment by plastic packaging materials. 

Lastly, cassava biobased materials should be improved using a holistic approach reflecting 

the target products, variable environment, minimising production costs and energy. Use of 

novel material resources, eliminating waste, and employing a standardised methodology via 

desirability optimisation, present a promising process integration tool for development of 

sustainable cassava biobased systems. 
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