90 research outputs found

    Helicobacter pylori Counteracts the Apoptotic Action of Its VacA Toxin by Injecting the CagA Protein into Gastric Epithelial Cells

    Get PDF
    Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host

    Biogenesis and functions of bacterial S-layers.

    Get PDF
    The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions

    Effect of Helicobacter pylori on gastric epithelial cell migration and proliferation in vitro: role of VacA and CagA

    No full text

    Effect of Helicobacter pylori on gastric epithelial cell migration and proliferation in vitro: role of VacA and CagA.

    No full text
    Helicobacter pylori infection is associated with inflammation of the gastric mucosa and with gastric mucosal damage. In this study, we sought to test the hypothesis that two H. pylori virulence factors (VacA and CagA) impair gastric epithelial cell migration and proliferation, the main processes involved in gastric mucosal healing in vivo. Human gastric epithelial cells (MKN 28) were incubated with undialyzed or dialyzed broth culture filtrates from wild-type H. pylori strains or isogenic mutants defective in production of VacA, CagA, or both products. We found that (i) VacA specifically inhibited cell proliferation without affecting cell migration, (ii) CagA exerted no effect on either cell migration or proliferation, and (iii) undialyzed H. pylori broth culture filtrates inhibited both cell migration and proliferation through a VacA- and CagA-independent mechanism. These findings demonstrate that, in addition to damaging the gastric mucosa, H. pylori products may also impair physiological processes required for mucosal repair
    • …
    corecore