714 research outputs found

    Crack tip fields and fracture resistance parameters based on strain gradient plasticity

    Get PDF
    The crack tip mechanics of strain gradient plasticity solids is investigated analytically and numerically. A first-order mechanism-based strain gradient (MSG) plasticity theory based on Taylor's dislocation model is adopted and implemented in the commercial finite element package ANSYS by means of a user subroutine. Two boundary value problems are considered, a single edge tension specimen and a biaxially loaded plate. First, crack tip fields are characterized. Strain gradient effects associated with dislocation hardening mechanisms elevate crack tip stresses relative to conventional plasticity. A parametric study is conducted and differences with conventional plasticity predictions are quantified. Moreover, the asymptotic nature of the crack tip solution is investigated. The numerical results reveal that the singularity order predicted by the first-order MSG theory is equal or higher to that of linear elastic solids. Also, the crack tip field appears not to have a separable solution. Moreover, contrarily to what has been shown in the higher order version of MSG plasticity, the singularity order exhibits sensitivity to the plastic material properties. Secondly, analytical and numerical approaches are employed to formulate novel amplitude factors for strain gradient plasticity. A generalized J-integral is derived and used to characterize a nonlinear amplitude factor. A closed-form equation for the analytical stress intensity factor is obtained. Amplitude factors are also derived by decomposing the numerical solution for the crack tip stress field. Nonlinear amplitude factor solutions are determined across a wide range of values for the material length scale l and the strain hardening exponent N. The domains of strain gradient relevance are identified, setting the basis for the application of first-order MSG plasticity for fracture and damage assessment

    The effect of creep damage formulation on crack tip fields, creep stress intensity factor and crack growth assessments

    Get PDF
    Fields of stress, strain rate and process zone of a mode I creep crack growth are analyzed by employing damage evolution equations. Damage models for fracture of process zone represented by stress based formulation. Two expressions are presented to describe the stress-sensitive nature of multiaxial rupture behavior. Both damage free and defective creeping solids have been studied. The variation of creep stress and the crack-tip governing parameter in the form of creep In-integral with time and the evolution of creep damage were analyzed by using the FE-model. The effect of the introduced creep stress intensity factor as a function of creep time through the continuum damage mechanics of the creep crack growth are discussed in detail

    Low-energy general relativity with torsion: a systematic derivative expansion

    Full text link
    We attempt to build systematically the low-energy effective Lagrangian for the Einstein--Cartan formulation of gravity theory that generally includes the torsion field. We list all invariant action terms in certain given order; some of the invariants are new. We show that in the leading order the fermion action with torsion possesses additional U(1)_L x U(1)_R gauge symmetry, with 4+4 components of the torsion (out of the general 24) playing the role of Abelian gauge bosons. The bosonic action quadratic in torsion gives masses to those gauge bosons. Integrating out torsion one obtains a point-like 4-fermion action of a general form containing vector-vector, axial-vector and axial-axial interactions. We present a quantum field-theoretic method to average the 4-fermion interaction over the fermion medium, and perform the explicit averaging for free fermions with given chemical potential and temperature. The result is different from that following from the "spin fluid" approach used previously. On the whole, we arrive to rather pessimistic conclusions on the possibility to observe effects of the torsion-induced 4-fermion interaction, although under certain circumstances it may have cosmological consequences.Comment: 33 pages, 1 figure. A new section, discussion and references added. Final (published) versio

    Observation of a narrow baryon resonance with positive strangeness formed in K+K^+Xe collisions

    Get PDF
    The charge-exchange reaction K^+ Xe --> K^0 p Xe' is investigated using the data of the DIANA experiment. The distribution of the pK^0 effective mass shows a prominent enhancement near 1538 MeV formed by \sim 80 events above the background, whose width is consistent with being entirely due to the experimental resolution. Under the selections based on a simulation of K^+Xe collisions, the statistical significance of the signal reaches 5.5\sigma. We interpret this observation as strong evidence for formation of a pentaquark baryon with positive strangeness, \Theta^+(uudd\bar{s}), in the charge-exchange reaction K^+ n --> K^0 p on a bound neutron. The mass of the \Theta^+ baryon is measured as m(\Theta^+) = 1538+-2 MeV. Using the ratio between the numbers of resonant and non-resonant charge-exchange events in the peak region, the intrinsic width of this baryon resonance is determined as \Gamma(\Theta^+) = 0.34+-0.10 MeV.Comment: 19 pages, 8 figure

    Further evidence for formation of a narrow baryon resonance with positive strangeness in K+ collisions with Xe nuclei

    Full text link
    We have continued our investigation of the charge-exchange reaction K^+ Xe --> K^0 p Xe' in the bubble chamber DIANA. In agreement with our previous results based on part of the present statistics, formation of a narrow p K^0 resonance with mass of 1537+-2 MeV/c^2 is observed in the elementary transition K^+ n --> K^0 p on a neutron bound in the Xenon nucleus. Visible width of the peak is consistent with being entirely due to instrumental resolution and allows to place an upper limit on its intrinsic width: \Gamma < 9 MeV/c^2. A more precise estimate of the resonance intrinsic width, \Gamma = 0.36+-0.11 MeV/c^2, is obtained from the ratio between the numbers of resonant and non-resonant charge-exchange events. The signal is observed in a restricted interval of incident K^+ momentum, that is consistent with smearing of a narrow p K^0 resonance by Fermi motion of the target neutron. Statistical significance of the signal is some 7.3, 5.3, and 4.3 standard deviations for the estimators S/sqrt{B}, S/sqrt{S+B}, and S/sqrt{S+2B}, respectively. This observation confirms and reinforces our earlier results, and offers strong evidence for formation of a pentaquark baryon with positive strangeness in the charge-exchange reaction K^+ n --> K^0 p on a bound neutron.Comment: 13 pages, 8 figures, some chenges in text and references, more precise estimate of Theta(1540) to add, submitted to Phys.Atom.Nucl(Yad.Fiz.

    Observation of a baryon resonance with positive strangeness in K+ collisions with Xe nuclei

    Full text link
    The status of our investigation of low-energy K+K^+Xe collisions in the Xenon bubble chamber DIANA is reported. In the charge-exchange reaction K+XeK0pXeK^+Xe \to K^0 p Xe' the spectrum of K0pK^0 p effective mass shows a resonant enhancement with M=1539±2M = 1539 \pm 2 MeV/c2^2 and Γ9MeV/c\Gamma \le 9 MeV/c^2.Thestatisticalsignificanceoftheenhancementisnear. The statistical significance of the enhancement is near 4.4\sigma$. The mass and width of the observed resonance are consistent with expectations for the lightest member of the anti-decuplet of exotic pentaquark baryons, as predicted in the framework of the chiral soliton model.Comment: 9 pages, 4 figure

    Surface crack growth subject to bending and biaxial tension-compression

    Get PDF
    Fatigue surface crack growth and the in-plane and out-of-plane constraint effects are studied through experiments and computations for aluminium alloy D16T. Subjects for studies are cruciform specimens under different biaxial loading and bending central notched specimens with external semi-elliptical surface crack. Both the optical microscope measurements and the crack opening displacement (COD) method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth rate and surface crack paths behaviour is studied under cyclic pure bending and biaxial tension-compression fatigue loading. This work is centered on the relations between crack size on the free surface of specimen considered configurations, COD and aspect ratio under different fatigue loading conditions. For the experimental surface crack paths in tested specimens the T-stress, the local triaxiality parameter h, the out-of-plane TZ factor and the governing parameter for the 3D-fields of the stresses and strains at the crack tip in the form of In-integral were calculated as a function of aspect ratio by finite element analysis to characterization of the constraint effects along semi-elliptical crack front. The plastic stress intensity factor approach is applied to the fatigue crack growth on the free surface of the tested bending and cruciform specimens as well as the deepest point of the semi-elliptical surface crack front. As result fatigue surface crack paths or crack front positions as a function of accumulated number of cycle of loading are obtained

    Oil and Gas Education in Russia: Yesterday, Today, Tomorrow

    Get PDF
    The role and importance of oil and gas in modern society cannot be overestimated. At the turn of the 18th century, with the advent of the first signs of fuel new to the world, the Russian state attached great importance to the creation of all conditions for the development of the oil business. This article highlights the background and development of oil and gas education in Russia, shows the stages of its formation in the post-Soviet space. Statistics is given on the number of students majoring in oil and gas direction on the territory in the Russian Federation. The authors dwell on the role of the Educational and Methodological Association in the formation of oil and gas education. Achievements and problems of oil and gas education functioning in Russia are considered
    corecore