114 research outputs found

    CO2 and H2S Degassing at Fangaia Mud Pool, Solfatara, Campi Flegrei (Italy): Origin and Dynamics of the Pool Basin

    Get PDF
    The Fangaia mud pool provides a "window" into the hydrothermal system underlying the degassing Solfatara crater, which is the most active volcanic centre inside the restless Campi Flegrei caldera, Southern Italy. The present study aimed at unravelling the degassing dynamics of CO2 and H2S flushing through the pH 1.2 steam-heated Fangaia mud pool, an ideal field laboratory as a proxy of an active crater lake. Our results from MultiGAS measurements above Fangaia's surface show that H2S scrubbing, demonstrated by high CO2/H2S ratios, was most efficient in the portions of the basin affected by diffusive degassing. Convective bubbling degassing instead was the most effective mechanism to release gas in quantitative terms, with lower CO2/H2S ratios, similar to the Solfatara crater fumaroles, the high-T end member of the hydrothermal system. Unsurprisingly, total estimated CO2 and H2S fluxes from the small Fangaia pool (~184 m2 in June 2017) were at least two orders of magnitude lower (CO2 flux < 64 t/d, H2S flux < 0.5 t/d) than the total CO2 flux of the Campi Flegrei caldera (up to 3000 t/d for CO2), too low to affect the gas budget for the caldera, and hence volcano monitoring routines. Given the role of the rising gas as "sediment stirrer", the physical and chemical processes behind gas migration through a mud pool are arguably the creating processes giving origin to Fangaia. Follow-up studies of this so far unique campaign will help to better understand the fast dynamics of this peculiar degassing feature

    The electrical signature of mafic explosive eruptions at Stromboli volcano, Italy

    Get PDF
    Volcanic lightning is commonly observed in explosive volcanic eruptions of Volcanic Explosivity Index (VEI) > 2 and can be detected remotely providing real-time volcano monitoring information. However, little is known about the electrical activity accompanying the lower-magnitude spectrum of explosive eruptions, often involving mafic magmas. We narrow this gap in knowledge by presenting the electrical signature of the explosive activity (VEI ≤ 1) of Stromboli volcano (Italy) recorded by an electrostatic thunderstorm detector. The persistent eruptive activity of mild Strombolian explosions is occasionally interrupted by larger-scale major explosions and paroxysmal events. Here, we present electrical observations of three major explosions and unprecedented measurements of the 3 July 2019 paroxysm. The electrical signals of the major explosions show apparent similarities, with movements of charge and tens of electrical discharges, arising the question of whether these observations could be used to supplement the classification scheme of explosions on Stromboli. The electrical signals from the 3 July 2019 paroxysm exceed those from the major explosions in amplitude, discharge rate and complexity, showing characteristic variations during different phases of the eruption. These results show that also impulsive lower-magnitude explosions generate detectable electrical activity, which holds promise for monitoring low VEI activity at mafic volcanoes

    Multiparametric approach to unravel the mechanism of Strombolian activity at a multivent system: Mt. Etna case study

    Get PDF
    On 5th July 2014 an eruptive fissure (hereafter referred to as EF) opened at the base of North-East Crater (NEC) of Mt. Etna. EF produced both Strombolian explosions and lava effusion. Thanks to the multiparametric experiment planned in the framework of MEDSUV project, we had the chance to acquire geophysical and volcanological data, in order to investigate the ongoing volcanic activity at EF. Temporary instruments (2 broadband seismometers, 2 microphones, 3-microphone arrays, a high-speed video camera and a thermal-camera) were deployed near the active vents during 15-16 July 2014 and were integrated with the data recorded by the permanent networks. Several kinds of studies are currently in progress, such as: frequency analysis by Fourier Transform and Short Time Fourier Transform to evaluate the spectral content of both seismic and acoustic signals; partitioning of seismic and acoustic energies, whose time variations could reflect changes in the volcanic dynamics; investigation on the intertimes between explosions to investigate their recurrence behaviour; classification of the waveforms, of infrasound events. Furthermore, joint analysis of video signals and seismic-acoustic wavefields outlined relationships between pyroclasts ejection velocity, total erupted mass, peak explosion pressure, and air-ground motion coupling. This multiparametric approach allowed distinguishing and characterizing individually the behavior of the two vents active along the eruptive fissure via their thermal, visible and infrasonic signatures and shed light in the eruptive dynamics.UnpublishedVienna (Austria)5V. Processi eruttivi e post-eruttiv

    Heat flux-based strategies for the thermal monitoring of sub-fumarolic areas: Examples from Vulcano and La Soufrière de Guadeloupe

    Get PDF
    Although it is relatively easy to set-up, the monitoring of soil temperature in sub-fumarolic areas is quite rarely used to monitor the evolution of hydrothermal systems. Indeed, measurements are highly sensitive to environmental conditions, in particular daily and seasonal variations of atmospheric temperatures and rainfalls, which can be only partially filtered by the established statistical analysis. In this paper, we develop two innovative processingmethods, both based on the computation of the heat flux in the soil. The upward heat flux method (UHF), designed for dry environments, consists in computing both the conductive and convective components of the heat flux between two thermocouples placed vertically. In the cases of wet environments, the excess of total heat method (ETH) allows the integration of rain gauges data in order to correct the heat balance fromthe superficial cooling effect of the precipitations. The performances of both processing techniques are faced to established methods (temperature gradient and coefficient of determination) on soil temperature time series from two test volcanoes. At La Fossa di Vulcano (Italy), the UHF method undoubtedly detects three thermal crises between 2009 and 2012, enabling to quantify not only the intensity but also the precise timing of the heat flux increase with respect to corresponding geochemical and seismic crises. At La Soufrière de Guadeloupe (French Lesser Antilles), despite large rainfalls dramatically influencing the thermal behavior of the soil, a constant geothermal heat flux is retrieved by the ETH method, confirming the absence of fumarolic crisis during the observation period (February–August 2010). Being quantitative, robust, and usable in almost any context of sub-fumarolic zones, our two heat flux-based methods increase the potential of soil temperature for the monitoring, but also the general interpretation of fumarolic crises together with geochemical and seismological observations. A spreadsheet allowing direct computation of UHF and ETH is provided as supplemental material.Published122-1342V. Struttura e sistema di alimentazione dei vulcaniJCR Journa

    Time-series analysis of fissure-fed multi-vent activity: a snapshot from the July 2014 eruption of Etna volcano (Italy)

    Get PDF
    The April to May 2010 eruption of Eyjafjallajökull (Iceland) volcano was characterized by a large compositional variability of erupted products. To contribute to the understanding of the plumbing system dynamics of this volcano, we present new EMPA and LA-ICP-MS data on groundmass glasses of ash particles and minerals erupted between April 15 and 22. The occurrence of disequilibrium textures in minerals, such as resorption and inverse zoning, indicate that open system processes were involved in determining the observed compositional variability. The variation of major and trace element data of glasses corroborates this hypothesis indicating that mixing between magma batches with different compositions interacted throughout the whole duration of the eruption. In particular, the arrival of new basaltic magma into the plumbing system of the volcano destabilized and remobilized magma batches of trachyandesite and rhyolite compositions that, according to geophysical data, might have intruded as sills over the past 20 years beneath the Eyjafjallajökull edifice. Two mixing processes are envisaged to explain the time variation of the compositions recorded by the erupted tephra. The first occurred between basaltic and trachyandesitic end-members. The second occurred between trachyandesite and rhyolites. Least-squares modeling of major elements supports this hypothesis. Furthermore, investi- gation of compositional histograms of trace elements allows us to estimate the initial proportions of melts that interacted to generate the compositional variability triggered by mixing of trachyandesites and rhyolites.Published515V. Dinamica dei processi eruttivi e post-eruttiviJCR Journa

    Unoccupied Aircraft Systems (UASs) Reveal the Morphological Changes at Stromboli Volcano (Italy) before, between, and after the 3 July and 28 August 2019 Paroxysmal Eruptions

    Get PDF
    In July and August 2019, two paroxysmal eruptions dramatically changed the morphology of the crater terrace that hosts the active vents of Stromboli volcano (Italy). Here, we document these morphological changes, by using 2259 UAS-derived photographs from eight surveys and Structure-from-Motion (SfM) photogrammetric techniques, resulting in 3D point clouds, orthomosaics, and digital surface models (DSMs) with resolution ranging from 8.1 to 12.4 cm/pixel. We focus on the morphological evolution of volcanic features and volume changes in the crater terrace and the upper part of the underlying slope (Sciara del Fuoco). We identify both crater terrace and lava field variations, with vents shifting up to 47 m and the accumulation of tephra deposits. The maximum elevation changes related to the two paroxysmal eruptions (in between May and September 2019) range from +41.4 to −26.4 m at the lava field and N crater area, respectively. Throughout September 2018–June 2020, the total volume change in the surveyed area was +447,335 m3. Despite Stromboli being one of the best-studied volcanoes worldwide, the UAS-based photogrammetry products of this study provide unprecedented high spatiotemporal resolution observations of its entire summit area, in a period when volcanic activity made the classic field inspections and helicopter overflights too risky. Routinely applied UAS operations represent an effective and evolving tool for volcanic hazard assessment and to support decision-makers involved in volcanic surveillance and civil protection operations

    Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest

    Get PDF
    This short communication aims at providing an updated report on degassing activity and ground deformation variations observed during the ongoing (2012–2019) Campi Flegrei caldera unrest, with a particular focus on Pisciarelli, currently its most active fumarolic field.We show that the CO2 flux fromthe main Pisciarelli fumarolic vent (referred as “Soffione”) has increased by a factor N 3 since 2012, reaching in 2018–2019 levels (N600 tons/ day) that are comparable to those typical of a medium-sized erupting arc volcano. A substantial widening ofthe degassing vents and bubbling pools, and a further increase in CO2 concentrations in ambient air (up to 6000 ppm), have also been detected since mid-2018. We interpret this escalating CO2 degassing activity using a multidisciplinary dataset that includes thermodynamically estimated pressures for the source hydrothermal system, seismic and ground deformation data. From this analysis, we show that degassing, deformation and seis- micity have all reached in 2018–2019 levels never observed since the onset ofthe unrest in 2005, with an overall uplift of~57 cmand ~448 seismic events in the last year. The calculated pressure ofthe Campi Flegrei hydrother- mal system has reached ~44 bar and is rapidly increasing. Our results raise concern on the possible evolution of the Campi Flegrei unrest and reinforce the need for careful monitoring of the degassing activity at Pisciarelli, hopefully with the deployment of additional permanent gas monitoring units.Published151-1574V. Processi pre-eruttiviJCR Journa
    corecore