606 research outputs found

    GEOMETRIC PROCESSING OF VERY HIGH-RESOLUTION SATELLITE IMAGERY: QUALITY ASSESSMENT FOR 3D MAPPING NEEDS

    Get PDF
    In recent decades, the geospatial domain has benefitted from technological advances in sensors, methodologies, and processing tools to expand capabilities in mapping applications. Airborne techniques (LiDAR and aerial photogrammetry) generally provide most of the data used for this purpose. However, despite the relevant accuracy of these technologies and the high spatial resolution of airborne data, updates are not sufficiently regular due to significant flight costs and logistics. New possibilities to fill this information gap have emerged with the advent of Very High Resolution (VHR) optical satellite images in the early 2000s. In addition to the high temporal resolution of the cost-effective datasets and their sub-meter geometric resolutions, the synoptic coverage is an unprecedented opportunity for mapping remote areas, multi-temporal analyses, updating datasets and disaster management. For all these reasons, VHR satellite imagery is clearly a relevant study for National Mapping and Cadastral Agencies (NMCAs). This work, supported by EuroSDR, summarises a series of experimental analyses carried out over diverse landscapes to explore the potential of VHR imagery for large-scale mapping

    Evidence for tidal interaction and merger as the origin of galaxy morphology evolution in compact groups

    Get PDF
    We present the results of a morphological study based on NIR images of 25 galaxies, with different levels of nuclear activity, in 8 Compact Groups of Galaxies (CGs). We perform independently two different analysis: a isophotal study and a study of morphological asymmetries. The results yielded by the two analysis are highly consistent. For the first time, it is possible to show that deviations from pure ellipses are produced by inhomogeneous stellar mass distributions related to galaxy interactions and mergers. We find evidence of mass asymmetries in 74% of the galaxies in our sample. In 59% of these cases, the asymmetries come in pairs, and are consistent with tidal effects produced by the proximity of companion galaxies. The symmetric galaxies are generally small in size or mass, inactive, and have an early-type morphology. In 20% of the galaxies we find evidence for cannibalism. In 36% of the early-type galaxies the color gradient is positive (blue nucleus) or flat. Summing up these results, as much as 52% of the galaxies in our sample could show evidence of an on going or past mergers. Our observations suggest that galaxies in CGs merge more frequently under ``dry'' conditions. The high frequency of interacting and merging galaxies observed in our study is consistent with the bias of our sample towards CGs of type B, which represents the most active phase in the evolution of the groups. In these groups we also find a strong correlation between asymmetries and nuclear activity in early-type galaxies. This correlation allows us to identify tidal interactions and mergers as the cause of galaxy morphology transformation in CGs.[abridge]Comment: 64 pages, 35 figures. Accepted for publication in Ap
    corecore