28 research outputs found

    Co-culture of cryopreserved healthy sertoli cells with testicular tissue of non-obstructive azoospermia (NOA) patients in culture media containing follicle-stimulating hormone (FSH)/testosterone has no advantage in germ cell maturation

    Get PDF
    Different cell culture conditions and techniques have been used to mature spermatogenic cells to increase the success of in vitro fertilization. Sertoli cells (SCs) are essential in maintaining spermatogenesis and FSH stimulation exerts its effect through direct or indirect actions on SCs. The effectiveness of FSH and testosterone added to the co-culture has been demonstrated in other studies to provide microenvironment conditions of the testicular niche and to contribute to the maturation and meiotic progression of spermatogonial stem cells (SSCs). In the present study, we investigated whether co-culture of healthy SCs with the patient's testicular tissue in the medium supplemented with FSH/testosterone provides an advantage in the differentiation and maturation of germ cells in NOA cases (N = 34). In men with obstructive azoospermia (N = 12), healthy SCs from testicular biopsies were identified and purified, then cryopreserved. The characterization of healthy SCs was done by flow cytometry (FC) and immunohistochemistry using antibodies specific for GATA4 and vimentin. FITC-conjugated annexin V/PI staining and the MTT assay were performed to compare the viability and proliferation of SCs before and after freezing. In annexin V staining, no difference was found in percentages of live and apoptotic SCs, and MTT showed that cryopreservation did not inhibit SC proliferation compared to the pre-freezing state. Then, tissue samples from NOA patients were processed in two separate environments containing FSH/testosterone and FSH/testosterone plus co-culture with thawed healthy SCs for 7 days. FC was used to measure 7th-day levels of specific markers expressed in spermatogonia (VASA), meiotic cells (CREM), and post-meiotic cells (protamine-2 and acrosin). VASA and acrosin basal levels were found to be lower in infertile patients compared to the OA group (8.2% vs. 30.6% and 12.8% vs. 30.5%, respectively; p &lt; 0.05). Compared to pre-treatment measurements, on the 7th day in the FSH/testosterone environment, CREM levels increased by 58.8% and acrosin levels increased by 195.5% (p &lt; 0.05). Similarly, in medium co-culture with healthy SCs, by day 7, CREM and acrosin levels increased to 92.2% and 204.8%, respectively (p &lt; 0.05). Although VASA and protamine levels increased in both groups, they did not reach a significant level. No significant difference was found between the day 7 increase rates of CREM, VASA, acrosin and protamine-2 in either FSH/testosterone-containing medium or in medium additionally co-cultured with healthy SCs (58.8% vs. 92.2%, 120.6% vs. 79.4%, 195.5% vs. 204.8%, and 232.3% vs. 198.4%, respectively; p &gt; 0.05). Our results suggest that the presence of the patient's own SCs for maturation of germ cells in the culture medium supplemented with FSH and testosterone is sufficient, and co-culture with healthy SCs does not have an additional advantage. In addition, the freezing-thawing process would not impair the viability and proliferation of SCs.</p

    DOWNREGULATION OF STEAROYL-COA DESATURASE 1 (SCD-1) PROMOTES RESISTANCE TO IMATINIB IN CHRONIC MYELOID LEUKEMIA

    Get PDF
    Chronic myeloid leukemia (CML) is a malignant hematopoietic stem cell disease resulting in the fusion of BCR and ABL genes and characterized by the presence of the reciprocal translocation t(9;22)(q34;q11). BCR-ABL, a product of the BCR-ABL fusion gene, is a structurally active tyrosine kinase and plays an important role in CML disease pathogenesis. Imatinib mesylate (IMA) is a strong and selective BCR-ABL tyrosine kinase inhibitor. Although IMA therapy is an effective treatment, patients may develop resistance to IMA therapy over time. This study investigated the possible genetic resistance mechanisms in patients developing resistance to IMA. We did DNA sequencing in order to detect BCR-ABL mutations, which are responsible for IMA resistance. Moreover, we analyzed the mRNA expression levels of genes responsible for apoptosis, such as BCL-2, P53, and other genes (SCD-1, PTEN). In a group of CML patients resistant to IMA, when compared with IMA-sensitive CML patients, a decrease in SCD-1 gene expression levels and an increase in BCL-2 gene expression levels was observed. In this case, the SCD-1 gene was thought to act as a tumor suppressor. The present study aimed to investigate the mechanisms involved in IMA resistance in CML patients and determine new targets that can be beneficial in choosing the effective treatment. Finally, the study suggests that the SCD-1 and BCL-2 genes may be mechanisms responsible for resistance. Keywords  CML; Imatinib resistance; BCR-ABL mutations; SCD-

    Methylsulfonylmethane Induces p53 Independent Apoptosis in HCT-116 Colon Cancer Cells

    No full text
    Methylsulfonylmethane (MSM) is an organic sulfur-containing compound which has been used as a dietary supplement for osteoarthritis. MSM has been shown to reduce oxidative stress and inflammation, as well as exhibit apoptotic or anti-apoptotic effects depending on the cell type or activating stimuli. However, there are still a lot of unknowns about the mechanisms of actions of MSM. In this study, MSM was tested on colon cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis revealed that MSM inhibited cell viability and increased apoptotic markers in both HCT-116 p53 +/+ and HCT-116 p53 −/− colon cancer cells. Increased poly (ADP-ribose) polymerase (PARP) fragmentation and caspase-3 activity by MSM also supported these findings. MSM also modulated the expression of various apoptosis-related genes and proteins. Moreover, MSM was found to increase c-Jun N-terminal kinases (JNK) phosphorylation in both cell lines, dose-dependently. In conclusion, our results show for the first time that MSM induces apoptosis in HCT-116 colon cancer cells regardless of their p53 status. Since p53 is defective in &gt;50% of tumors, the ability of MSM to induce apoptosis independently of p53 may offer an advantage in anti-tumor therapy. Moreover, the remarkable effect of MSM on Bim, an apoptotic protein, also suggests its potential use as a novel chemotherapeutic agent for Bim-targeted anti-cancer therapies

    Examining the Association Between Executive Functions and Developmental Domains of Low-Income Children in the United States and Turkey

    No full text
    WOS: 000456528000010PubMed ID: 29436982This study examined the relations between executive functions and developmental domains of preschool children from low-income families through an intercultural perspective in the U.S. and Turkey. A total of 471 children and their primary caregivers participated in the Turkey part of the study, while 286 children and their parents engaged in U.S. sample. Regression analyses revealed that fine motor, problem solving, and executive functions of children between two contexts were significantly different from each other. In the U.S., executive functions predicted communication, problem solving, and fine motor development, whereas in the Turkish sample, executive functions did not predict domain scores. Child gender predicted four of five developmental outcomes in the U.S., whereas maternal education predicted two of five outcomes in Turkey. In addition, invariance testing demonstrated that predictors to outcomes were not significantly different between the two countries. Country differences from the first set of outcomes were explained in the context of the research sites, children's socialization, and cultural expectations surrounding child development. This study raises questions about relations between executive functions and developmental domains for future research.Hacettepe University Scientific Research Unit in AnkaraHacettepe University [SDS-2015-5455]The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The Turkey part of this work was supported by Hacettepe University Scientific Research Unit in Ankara, under research grant number SDS-2015-5455. The research was conducted by the allowance of Altindag. District National Education Directorate

    Genetic Variants in the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand and Death Receptor Genes Contribute to Susceptibility to Bladder Cancer

    No full text
    Aim: The aim of this study was to evaluate the role of polymorphisms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and death receptor (DR4) genes in bladder cancer susceptibility in a Turkish population. Materials and Methods: The study group included 91 bladder cancer patients, while the control group comprised 139 individuals with no evidence of malignancy. Gene polymorphisms of TRAIL C1595T (rs1131580) and DR4 C626G (rs4871857) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results: The frequency of the TRAIL 1595 TT genotype was significantly lower in patients with bladder cancer compared to controls (p<0.001; odds ratios [OR]=0.143; 95% confidence interval [CI]=0.045-0.454). A significantly increased risk for developing bladder cancer was found for the group bearing a C allele for TRAIL C1595T polymorphism (p<0.001; OR=1.256; 95% CI=1.138-1.386). The observed genotype and allele frequencies of DR4 626 C/G in all groups were in agreement with the Hardy-Weinberg equilibrium (p=0.540). However, the frequency of DR4 GG genotype was found to be 2.1-fold increased in the bladder cancer patients with high-grade tumor, when compared to those having low-grade tumor (p=0.036). Additionally, combined genotype analysis showed that the frequency of TRAILCT-DR4GG was significantly higher in patients with bladder cancer in comparison with those of controls (p=0.037; OR=2.240; 95% CI=1.138-1.386). Conclusions: Our study provides new evidence that TRAIL 1595 C allele may be used as a low-penetrant risk factor for bladder cancer development in a Turkish population. Otherwise, gene-gene interaction analysis revealed that the DR4GG genotype may have a predominant effect on the increased risk of bladder cancer over the TRAIL CT genotype
    corecore