780 research outputs found

    SplitPlace: AI augmented splitting and placement of large-scale neural networks in mobile edge environments

    Get PDF
    In recent years, deep learning models have become ubiquitous in industry and academia alike. Deep neural networks can solve some of the most complex pattern-recognition problems today, but come with the price of massive compute and memory requirements. This makes the problem of deploying such large-scale neural networks challenging in resource-constrained mobile edge computing platforms, specifically in mission-critical domains like surveillance and healthcare. To solve this, a promising solution is to split resource-hungry neural networks into lightweight disjoint smaller components for pipelined distributed processing. At present, there are two main approaches to do this: semantic and layer-wise splitting. The former partitions a neural network into parallel disjoint models that produce a part of the result, whereas the latter partitions into sequential models that produce intermediate results. However, there is no intelligent algorithm that decides which splitting strategy to use and places such modular splits to edge nodes for optimal performance. To combat this, this work proposes a novel AI-driven online policy, SplitPlace, that uses Multi-Armed-Bandits to intelligently decide between layer and semantic splitting strategies based on the input task's service deadline demands. SplitPlace places such neural network split fragments on mobile edge devices using decision-aware reinforcement learning for efficient and scalable computing. Moreover, SplitPlace fine-tunes its placement engine to adapt to volatile environments. Our experiments on physical mobile-edge environments with real-world workloads show that SplitPlace can significantly improve the state-of-the-art in terms of average response time, deadline violation rate, inference accuracy, and total reward by up to 46, 69, 3 and 12 percent respectively

    CILP: Co-simulation based imitation learner for dynamic resource provisioning in cloud computing environments

    Get PDF
    Intelligent Virtual Machine (VM) provisioning is central to cost and resource efficient computation in cloud computing environments. As bootstrapping VMs is time-consuming, a key challenge for latency-critical tasks is to predict future workload demands to provision VMs proactively. However, existing AI-based solutions tend to not holistically consider all crucial aspects such as provisioning overheads, heterogeneous VM costs and Quality of Service (QoS) of the cloud system. To address this, we propose a novel method, called CILP, that formulates the VM provisioning problem as two sub-problems of prediction and optimization, where the provisioning plan is optimized based on predicted workload demands. CILP leverages a neural network as a surrogate model to predict future workload demands with a co-simulated digital-twin of the infrastructure to compute QoS scores. We extend the neural network to also act as an imitation learner that dynamically decides the optimal VM provisioning plan. A transformer based neural model reduces training and inference overheads while our novel two-phase decision making loop facilitates in making informed provisioning decisions. Crucially, we address limitations of prior work by including resource utilization, deployment costs and provisioning overheads to inform the provisioning decisions in our imitation learning framework. Experiments with three public benchmarks demonstrate that CILP gives up to 22% higher resource utilization, 14% higher QoS scores and 44% lower execution costs compared to the current online and offline optimization based state-of-the-art methods

    MetaNet: automated dynamic selection of scheduling policies in cloud environments

    Get PDF
    Task scheduling is a well-studied problem in the context of optimizing the Quality of Service (QoS) of cloud computing environments. In order to sustain the rapid growth of computational demands, one of the most important QoS metrics for cloud schedulers is the execution cost. In this regard, several data-driven deep neural networks (DNNs) based schedulers have been proposed in recent years to allow scalable and efficient resource management in dynamic workload settings. However, optimal scheduling frequently relies on sophisticated DNNs with high computational needs implying higher execution costs. Further, even in non-stationary environments, sophisticated schedulers might not always be required and we could briefly rely on low-cost schedulers in the interest of cost-efficiency. Therefore, this work aims to solve the non-trivial meta problem of online dynamic selection of a scheduling policy using a surrogate model called MetaNet. Unlike traditional solutions with a fixed scheduling policy, MetaNet on-the-fly chooses a scheduler from a large set of DNN based methods to optimize task scheduling and execution costs in tandem. Compared to state-of-the-art DNN schedulers, this allows for improvement in execution costs, energy consumption, response time and service level agreement violations by up to 11, 43, 8 and 13 percent, respectively

    SimTune: bridging the simulator reality gap for resource management in edge-cloud computing

    Get PDF
    Industries and services are undergoing an Internet of Things centric transformation globally, giving rise to an explosion of multi-modal data generated each second. This, with the requirement of low-latency result delivery, has led to the ubiquitous adoption of edge and cloud computing paradigms. Edge computing follows the data gravity principle, wherein the computational devices move closer to the end-users to minimize data transfer and communication times. However, large-scale computation has exacerbated the problem of efficient resource management in hybrid edge-cloud platforms. In this regard, data-driven models such as deep neural networks (DNNs) have gained popularity to give rise to the notion of edge intelligence. However, DNNs face significant problems of data saturation when fed volatile data. Data saturation is when providing more data does not translate to improvements in performance. To address this issue, prior work has leveraged coupled simulators that, akin to digital twins, generate out-of-distribution training data alleviating the data-saturation problem. However, simulators face the reality-gap problem, which is the inaccuracy in the emulation of real computational infrastructure due to the abstractions in such simulators. To combat this, we develop a framework, SimTune, that tackles this challenge by leveraging a low-fidelity surrogate model of the high-fidelity simulator to update the parameters of the latter, so to increase the simulation accuracy. This further helps co-simulated methods to generalize to edge-cloud configurations for which human encoded parameters are not known apriori. Experiments comparing SimTune against state-of-the-art data-driven resource management solutions on a real edge-cloud platform demonstrate that simulator tuning can improve quality of service metrics such as energy consumption and response time by up to 14.7% and 7.6% respectively

    DRAGON: Decentralized fault tolerance in edge federations

    Get PDF
    Edge Federation is a new computing paradigm that seamlessly interconnects the resources of multiple edge service providers. A key challenge in such systems is the deployment of latency-critical and AI based resource-intensive applications in constrained devices. To address this challenge, we propose a novel memory-efficient deep learning based model, namely generative optimization networks (GON). Unlike GANs, GONs use a single network to both discriminate input and generate samples, significantly reducing their memory footprint. Leveraging the low memory footprint of GONs, we propose a decentralized fault-tolerance method called DRAGON that runs simulations (as per a digital modeling twin) to quickly predict and optimize the performance of the edge federation. Extensive experiments with real-world edge computing benchmarks on multiple Raspberry-Pi based federated edge configurations show that DRAGON can outperform the baseline methods in fault-detection and Quality of Service (QoS) metrics. Specifically, the proposed method gives higher F1 scores for fault-detection than the best deep learning (DL) method, while consuming lower memory than the heuristic methods. This allows for improvement in energy consumption, response time and service level agreement violations by up to 74, 63 and 82 percent, respectively

    DeepFT: Fault-tolerant edge computing using a self-supervised deep surrogate model

    Get PDF
    The emergence of latency-critical AI applications has been supported by the evolution of the edge computing paradigm. However, edge solutions are typically resource-constrained, posing reliability challenges due to heightened contention for compute capacities and faulty application behavior in the presence of overload conditions. Although a large amount of generated log data can be mined for fault prediction, labeling this data for training is a manual process and thus a limiting factor for automation. Due to this, many companies resort to unsupervised fault-tolerance models. Yet, failure models of this kind can incur a loss of accuracy when they need to adapt to non-stationary workloads and diverse host characteristics. Thus, we propose a novel modeling approach, DeepFT, to proactively avoid system overloads and their adverse effects by optimizing the task scheduling decisions. DeepFT uses a deep-surrogate model to accurately predict and diagnose faults in the system and co-simulation based self-supervised learning to dynamically adapt the model in volatile settings. Experimentation on an edge cluster shows that DeepFT can outperform state-of-the-art methods in fault-detection and QoS metrics. Specifically, DeepFT gives the highest F1 scores for fault-detection, reducing service deadline violations by up to 37% while also improving response time by up to 9%

    Measuring patient-perceived quality of care in US hospitals using Twitter

    Get PDF
    BACKGROUND: Patients routinely use Twitter to share feedback about their experience receiving healthcare. Identifying and analysing the content of posts sent to hospitals may provide a novel real-time measure of quality, supplementing traditional, survey-based approaches. OBJECTIVE: To assess the use of Twitter as a supplemental data stream for measuring patient-perceived quality of care in US hospitals and compare patient sentiments about hospitals with established quality measures. DESIGN: 404 065 tweets directed to 2349 US hospitals over a 1-year period were classified as having to do with patient experience using a machine learning approach. Sentiment was calculated for these tweets using natural language processing. 11 602 tweets were manually categorised into patient experience topics. Finally, hospitals with ≥50 patient experience tweets were surveyed to understand how they use Twitter to interact with patients. KEY RESULTS: Roughly half of the hospitals in the US have a presence on Twitter. Of the tweets directed toward these hospitals, 34 725 (9.4%) were related to patient experience and covered diverse topics. Analyses limited to hospitals with ≥50 patient experience tweets revealed that they were more active on Twitter, more likely to be below the national median of Medicare patients (p<0.001) and above the national median for nurse/patient ratio (p=0.006), and to be a non-profit hospital (p<0.001). After adjusting for hospital characteristics, we found that Twitter sentiment was not associated with Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings (but having a Twitter account was), although there was a weak association with 30-day hospital readmission rates (p=0.003). CONCLUSIONS: Tweets describing patient experiences in hospitals cover a wide range of patient care aspects and can be identified using automated approaches. These tweets represent a potentially untapped indicator of quality and may be valuable to patients, researchers, policy makers and hospital administrators

    COSCO: container orchestration using co-simulation and gradient based optimization for fog computing environments

    Get PDF
    Intelligent task placement and management of tasks in large-scale fog platforms is challenging due to the highly volatile nature of modern workload applications and sensitive user requirements of low energy consumption and response time. Container orchestration platforms have emerged to alleviate this problem with prior art either using heuristics to quickly reach scheduling decisions or AI driven methods like reinforcement learning and evolutionary approaches to adapt to dynamic scenarios. The former often fail to quickly adapt in highly dynamic environments, whereas the latter have run-times that are slow enough to negatively impact response time. Therefore, there is a need for scheduling policies that are both reactive to work efficiently in volatile environments and have low scheduling overheads. To achieve this, we propose a Gradient Based Optimization Strategy using Back-propagation of gradients with respect to Input (GOBI). Further, we leverage the accuracy of predictive digital-twin models and simulation capabilities by developing a Coupled Simulation and Container Orchestration Framework (COSCO). Using this, we create a hybrid simulation driven decision approach, GOBI*, to optimize Quality of Service (QoS) parameters. Co-simulation and the back-propagation approaches allow these methods to adapt quickly in volatile environments. Experiments conducted using real-world data on fog applications using the GOBI and GOBI* methods, show a significant improvement in terms of energy consumption, response time, Service Level Objective and scheduling time by up to 15, 40, 4, and 82 percent respectively when compared to the state-of-the-art algorithms
    • …
    corecore