
MetaNet: Automated Dynamic Selection of
Scheduling Policies in Cloud Environments

Shreshth Tuli∗, Giuliano Casale∗, Nicholas R. Jennings∗†
∗Imperial College London
†Loughborough University

{s.tuli20, g.casale}@imperial.ac.uk, n.r.jennings@lboro.ac.uk

Abstract—Task scheduling is a well-studied problem in the
context of optimizing the Quality of Service (QoS) of cloud
computing environments. In order to sustain the rapid growth
of computational demands, one of the most important QoS
metrics for cloud schedulers is the execution cost. In this
regard, several data-driven deep neural networks (DNNs) based
schedulers have been proposed in recent years to allow scalable
and efficient resource management in dynamic workload settings.
However, optimal scheduling frequently relies on sophisticated
DNNs with high computational needs implying higher execution
costs. Further, even in non-stationary environments, sophisticated
schedulers might not always be required and we could briefly
rely on low-cost schedulers in the interest of cost-efficiency.
Therefore, this work aims to solve the non-trivial meta problem of
online dynamic selection of a scheduling policy using a surrogate
model called MetaNet. Unlike traditional solutions with a fixed
scheduling policy, MetaNet on-the-fly chooses a scheduler from a
large set of DNN based methods to optimize task scheduling
and execution costs in tandem. Compared to state-of-the-art
DNN schedulers, this allows for improvement in execution costs,
energy consumption, response time and service level agreement
violations by up to 11, 43, 8 and 13 percent, respectively.

Index Terms—Cloud Computing; Deep Learning; Task
Scheduling; Scheduler Selection.

I. INTRODUCTION

THE onset of the Artificial Intelligence (AI) and Deep
Learning (DL) era has led to a recent shift in computation

from hand-encoded algorithms to data-driven solutions [1].
One such impact of DL is on resource management in dis-
tributed computational paradigms [2], [3]. The most popular
such paradigm, cloud computing, harnesses the data process-
ing capacities of multiple devices and provides services at
scale with high Quality of Service (QoS). The popularity
of cloud architectures is primarily attributed to the ability
to provision resources on demand, having significant cost
benefits, both for users as well as cloud providers. However,
in the age of the Internet of Things (IoT), wherein millions of
connected devices produce data that needs to be processed,
the demand of computational resources has increased [4].
In such cases, it becomes crucial to curtail the operational
costs of cloud machines. This calls for efficient resource
management schemes, such as task scheduling policies, to
execute workloads on cloud infrastructures within tight cost
budgets.

Background and Motivation. In recent years, the state-
of-the-art resource management solutions, which particularly
focus on optimal placement of tasks on cloud virtual machines

D
ed

ic
at

ed
B

ro
ke

r

M
et

aN
et

10 Hosts

0.0

0.2

0.4

0.6

C
os

t(
U

SD
)

D
ed

ic
at

ed
B

ro
ke

r

M
et

aN
et

50 Hosts

0.0

0.2

0.4

0.6

D
ed

ic
at

ed
B

ro
ke

r

M
et

aN
et

100 Hosts

0.0

0.2

0.4

0.6
Cost (Scheduling) Cost (Selection)

Figure 1. Comparison between cost per task with a dedicated broker node
and 10/50/100 cloud hosts as worker nodes. The scheduling policy is run
as a serverless function decided by MetaNet. The broker is a cloud VM
computational capacity of which depends on the number of worker nodes
and the complexity of the DNN based scheduling approach.

(VMs), leverage data-driven DL methods [5]–[10]. Such meth-
ods typically rely on a trace of resource utilization characteris-
tics and optimization metrics of tasks and cloud hosts and are
commonly referred to as trace-driven schedulers. They utilize
such traces to train a deep neural network (DNN) to estimate a
set of Quality of Service (QoS) parameters and run optimiza-
tion strategies to find the best scheduling decision for each
incoming task. However, most prior work assumes a broker-
worker model, wherein the scheduling policies are periodically
run on the broker and the incoming tasks are executed on
worker nodes [11]. Here, the schedulers aim to optimize only
the amortized task execution costs and typically ignore the cost
implications of running the scheduling policies [12], [13]. In
such cases, having a dedicated broker is often cost inefficient
due to the sparse computational requirement in discrete-time
control settings, wherein the task placement decisions are
taken at fixed scheduling intervals [8]. To tackle this, we resort
to paradigms such as Function as a Service (FaaS) that allow
execution of DL models as serverless functions, only costing
us for the run time of each model. Such stateless function calls
work in discrete-time control settings, such as task scheduling,
as the decisions are independent [8]. In such a case, if we
consider each DNN based scheduler as a serverless function
and the selection procedure as a task for a worker node, we can
work without the broker node altogether, leading to significant
cost gains (see Figure 1). The figure demonstrates that in a
case when MetaNet is run on worker nodes and its selected
scheduling policies are run as serverless functions, it can lead

1

ar
X

iv
:2

20
5.

10
64

2v
1

 [
cs

.D
C

]
 2

1
M

ay
 2

02
2

Figure 2. MetaNet Pipeline.

to up to 68% lower costs associated with task scheduling.
Challenges. The problem of selecting a scheduler at each

scheduling interval is non-trivial. There is a tradeoff when
selecting scheduling policies. Simple schedulers that rely on
lightweight DNNs are cost-efficient as they do not impose high
computational requirements; however, they do not provide
cost-optimal scheduling decisions [12]. On the other hand,
schedulers that utilize sophisticated DL models have high
execution times, translating to higher costs when running them
as serverless functions. However, compared to simpler DNNs,
they tend to provide cost-efficient task scheduling decisions.
We provide a more evidence based discussion in Section IV.
In non-stationary environments where incoming tasks typically
follow bursty workload characteristics [14], [15] it may be
more cost-efficient to utilize a simpler DNN in trivial cases
in lieu of a sophisticated one [16]. This requires dynamic
selection of the scheduling policy based on the latest state
of the cloud environment. As these decisions need to be taken
quickly and considering many resources together, relying on
expert-based scheduler selection is infeasible, giving rise to
the need for an automated selection approach.

Contributions. One way to tackle the above problem is to
build a tunable scheduler from the ground-up that can make
either quick and sub-optimal or slow and optimal scheduling
decisions. This tuning parameter that affects its computational
requirements can be dynamically updated to ensure cost-
efficiency. However, in this work, to leverage the recent scien-
tific advances in task scheduling and build a policy agnostic
solution, we choose a set of state-of-the-art methods. This
work aims to solve the meta-problem of on-the-fly selection
of a scheduling policy for a cloud computing environment
wherein the incoming tasks are executed on worker nodes
and scheduling decisions are run as serverless functions. To
solve this meta-problem, we develop the proposed solution
that we call MetaNet. A preliminary version of this work
was presented as a poster in ACM SIGMETRICS Conference
2022 [17]. Compared to the previous version, we provide
an end-to-end model description with an advanced DNN
as surrogate model to predict the task execution costs and
scheduling time for each policy. MetaNet selects the most
cost-efficient policy at each scheduling interval using such
online estimates. An overview of the complete pipeline is
presented in Figure 2. As we dynamically update the policy to
tradeoff between simple and sophisticated DL schedulers, this
facilitates MetaNet to reduce overall operational costs, energy

consumption, response time and Service Level Agreement
(SLA) violation rates by up to 11%, 43%, 8% and 13%
respectively compared to state-of-the-art schedulers in a static
management fashion.

II. RELATED WORK

Recent work in scheduling for cloud computing environ-
ments has demonstrated that AI-based solutions are not only
faster, but can also scale efficiently compared to traditional
heuristic and classical optimization techniques [5]–[8], [10].
Most contemporary dynamic resource management methods
decouple the decision-making problem into two stages: QoS
prediction and decision optimization [18]. This is commonly
referred to as the predict+optimize framework in literature
and is agnostic to the decision type [7]. We classify the
state-of-the-art schedulers as evolutionary and surrogate-based
optimization methods.

Evolutionary Optimization. This class of methods fore-
casts QoS of a future state of a cloud system and needs data
corresponding to historical QoS traces of the same system.
Several methods have been proposed that leverage a forecast-
ing model. For instance, a class of methods utilizes regression
models such as Linear Regression (LR) [19] or Gaussian
Process Regression [18], [20]. Others utilize auto-regressive
models such as AutoARIMA [21] based forecasting. Recent
works utilize DNNs to perform forecasting, for instance, using
LSTM neural networks [22] (we include AutoARIMA for
completeness, albeit it not being a DL-based solution). Using
a QoS prediction model, several previous works optimize the
provisioning decision to minimize execution costs or maximize
the utilization ratio. Conventional methods often use evolu-
tionary search strategies such as Ant Colony Optimization
(ACO) [23], which has been shown to exhibit state-of-the-
art QoS scores in recent work, particularly due to the property
of quickly converging to optima [24].

Surrogate Optimization. However, even with the advan-
tages of scalability and quick convergence to optima, few prior
works use gradient-based methods as neural approximators
are not consistent with the convexity/concavity requirements
of such methods [25], [26]. A method that resolves this is
GRAF [9] that uses a graph neural network (GNN) as a
surrogate model to predict service latencies and operational
costs for a given scheduling decision and uses gradient-based
optimization to minimize the service latencies or execution
costs. To do this, it uses the concept of neural network
inversion [27], wherein the method evaluates gradients of the
objective function with respect to inputs and runs optimization
in the input space. Other methods, such as Decision-NN,
combine the prediction and optimization steps by modifying
the loss function to train neural networks in conjunction with
the optimization algorithm [5]. This method uses a neural
network as a surrogate model to directly predict optimization
objectives such as costs to run decision optimization. However,
simple gradient-based approaches tend to often get stuck in
local optima. This problem is alleviated by momentum and
annealing in schedulers like GOBI and GOSH [8], [10]. Such

2

Users Gateway

Sensors and
Actuators

Cloud Hosts

IoT
Layer Management Layer Compute Layer

Cloud Computing Environment

Scheduling Policies
as FaaS

MetaNet

Figure 3. System Model.

methods take the scheduling decision and state of the cloud
system as resource utilization characteristics of workloads and
cloud nodes and output a QoS estimate such as execution cost
or scheduling time. GOSH, unlike GOBI, uses a stochastic es-
timate of the QoS and higher-order gradient updates for more
accurate QoS predictions and faster convergence compared to
first-order optimization strategies.

It is known that the gradient-free optimization methods
are computationally efficient, but provide poorer QoS results.
Gradient-based methods provide improved QoS scores at the
cost of higher compute requirements. For a broad coverage,
we consider methods from both classes discussed above. The
methods: ARIMA+ACO, LSTM+ACO, DecisionNN, Semi-
Direct, GRAF, GOBI and GOSH have been shown to give
state-of-the-art performance and hence used as baselines in
our experiments to validate the efficacy of MetaNet.

III. METHODOLOGY

A. System Model and Problem Formulation

In this work, we target a standard heterogeneous cloud com-
puting environment where all nodes are in the same Wide Area
Network (WAN); see Figure 3 for an overview. Our cloud
computing environment consists of multiple VMs that process
a set of independent workloads. Tasks are container instances
that need to be processed, generated from the sensors and
actuators in the IoT layer and communicated to the compute
nodes via gateway devices. We do not have any cloud broker;
instead, we run the scheduling policies as FaaS functions on a
serverless platform such as AWS Lambda or Azure Serverless.
As is common in prior work [6], [8], [28], we consider a
discrete-time control problem, i.e., we divide the timeline into
fixed-size execution intervals (of ∆ seconds) and denote the
t-th interval by It. A scheduling decision is made at the
start of each interval for all incoming tasks in the previous
interval. We consider a bounded execution with T intervals;
thus, t ∈ {1, . . . , T}. The decision of which scheduling policy
to execute as well as the scheduling decision is made at the
start of each interval. We consider a set of scheduling policies
P of size q. A summary of notation is presented in Table I.

We assume that there are a m number of host machines
in the cloud compute layer and denote them as H. We also
consider that there are nt workloads in the system in interval
It and denote the set of workloads as Wt. The feature vector

Table I
TABLE OF NOTATIONS

Symbol Meaning

It t-th interval
P Set of scheduling policies of size q
H Set of available hosts of size m
Wt Set of tasks in It of size nt

Hj
t Feature vector of host hj ∈ H at It

W i
t Feature vector of task wi

t ∈ Wt

St Scheduling decision in It as a bi-partite graph
φkt Amortized task execution cost for scheduler pk ∈ P in It
ωk
t Scheduling time for scheduler pk ∈ P in It

of task wit ∈ Wt (i denoted the index of a task) includes
the workload information with CPU utilization in terms of the
number of instructions per second (IPS), denoted by cit; RAM
utilization in GBs, denoted by rit; and disk storage utilization
in GBs, denoted by sit. Here, k ∈ {1, . . . , nt}. Thus, the
feature vector for task wit is denoted by W i

t = [cit, r
i
t, s

i
t].

The collection of feature vectors of all active tasks in It is
denoted by Wt. We similarly define the feature vector of host
hj ∈ H (j denoted the index of a host) at interval It as
Hj
t = [c̄jt , r̄

j
t , s̄

j
t] where c̄jt , r̄

j
t , s̄

j
t denote the CPU utilization

in terms of IPS, RAM utilization in GBs and disk storage
utilization in GBs averaged over interval It. The collection of
feature vectors of all hosts at interval It is denoted by Ht.
We also form a graph denoted by St = (V St , E

S
t), which is a

bi-partite graph with nodes of two types: tasks and hosts. The
edges of the graph (wit, h

j) ∈ ESt correspond to the allocation
decision where task wit is allocated to host hj . Each task and
host has a feature vector corresponding to the IPS, RAM, and
disk storage consumption as before.

If we use the scheduling policy pk ∈ P at interval It,
then we denote the scheduling decision by pk(t). Here q ∈
{1, . . . , q}. At interval It we denote the tasks that complete
in this interval by ηt ⊆ Wt. We denote the cost per second
for host hj as µj . Thus, for interval It we get amortized task
execution cost for a scheduler pk as

φk =

∑
hj∈H µ

j ·∆
|ηt|

, s.t. St = pk(t). (1)

The collection of all execution costs is denoted by φ. Similarly,
we denote the scheduling time for scheduler pk at interval
It by ωkt . For simplicity, we consider the cost for running a
serverless function for a unit second as a static parameter and
denote it by ρ. Thus, for interval It we get the scheduling cost
for a scheduler pk by

ωkt · ρ. (2)

In this work, we create a surrogate model fθ that is a
DNN with parameters θ. Given a system state at the start of
interval It characterized by [Wt−1, Ht−1, St−1], fθ estimates
the average task execution cost on the worker nodes for each
scheduler pk ∈ P as φ̂kt and the scheduling time of each
scheduler pk as ω̂kt . The collections of φ̂k and ω̂k for all k in

3

Figure 4. MetaNet Surrogate Model.

It are denoted by φ̂t and ω̂t, respectively. In such a case, our
problem can be formulated as

minimize
θ

T∑
t=1

φπt + ωπt · ρ

subject to St = pk(t),∀ t
π = arg min

k
(φ̂kt + ω̂kt · ρ),∀ t

φ̂t, ω̂t = fθ(Wt−1, Ht−1, St−1),∀ t,

(3)

where fθ is a surrogate of execution cost and scheduling
time of the cloud environment. Predicting the cost for each
interval is crucial as it is a variable that depends on the load
characteristics of the hosts in the cloud setup as well as the
running workloads. Predicting scheduling time is crucial as it
is not a static metric for many DL based schedulers. DL-based
schedulers have sophisticated search strategies such as ACO
and gradient-based optimization. Each has a different conver-
gence criterion that changes with the number of workloads
and volatility in the resource utilization characteristics.

B. MetaNet Model

Considering the above formulation, instead of optimizing the
weights of the neural network fθ using the execution style as
denoted by (3), to simplify training, we optimize θ such that
the predicted φ̄kt , ω̄

k
t match the ground-truth values φkt , ω

k
t for

a scheduler pk in interval It. We do this as the miniizer of k
over (φ̂kt +ω̂kt ·ρ) would match that over (φkt +ωkt ·ρ). Thus, we
train fθ to act as a surrogate of the φ and ω metrics. We call
this surrogate as the MetaNet model, an overview of which is
given in Figure 4. For the sake of simplicity and without loss
of generality, from now we drop the t index whenever this is
not ambiguous and use W , H , S, φk, ωk, φ̄k and ω̄k instead.

We now describe the complete pipeline in detail. The input
workload and host characteristics W and H are first converted
to matrices of size m × 3 and n × 3. Here, the 3 features
correspond to the CPU, RAM and storage characteristics. The
scheduling decision S is encoded as a graph with each node
feature vector of size 3. We use a composite neural network
as MetaNet and infer over the inputs as we describe next.

To infer over the workload and host characteristics, W and
H , we utilize a fully-connected network (FCN), also referred

to as feed-forward neural network in literature. We use ReLU
activation function with the FCN to generate

EW = ReLU(FeedForward(W)),

EH = ReLU(FeedForward(H)).
(4)

To infer over the scheduling decision graph S, we use a
graph-attention network (GAT) network [29]. Graph attention
operation performs convolution operation for each node over
its neighbors and uses dot product self-attention to aggregate
feature vectors. To build an approach agnostic to the number of
task or hosts, we create a new global node connected to each
workload and host node [30]. This gives the graph attention
operation as

ES = Sigmoid

(
1

n

n∑
i=1

θWGATW
i +

1

m

m∑
j=1

θHGATH
j

)
, (5)

where θHGAT and θWGAT are the weight matrices for the GAT
network. Now that we get the embedding outputs EW , EH and
ES , we apply multi-headed attention [31]. For any three input
tensors Q, K and V , we define multi-head self attention [31]
as passing it through z (number of heads) feed-forward layers
to get Qi, Ki and Vi for i ∈ {1, . . . , z}, and then applying
attention as

MultiHeadAtt(Q,K, V) = Concat(X1, . . . , Xz)

Xi = Attention(Qi,Ki, Vi).
(6)

Multi-Head Attention allows the model to jointly attend to in-
formation from different representation sub-spaces at different
positions. We first concatenate the two embeddings to generate

EW,H = [EW ,WH]. (7)

Then, we perform the operation

EM = MultiHeadAtt(EW,H , EW,H , ES),

E = LayerNorm(EW,H + EM),
(8)

where the LayerNorm operation normalizes the output for
stable training. The intuition behind using the self-attention
module is to focus on key task and host characteristics that
affect the scheduling time and execution costs. We finally
generate the scheduling time and execution cost estimates
using feed-forward networks as

φ̂ = Sigmoid(FeedForward(E)),

ω̂ = Sigmoid(FeedForward(E)).
(9)

4

0 5 10 15 20 25 30

Epochs

0.2

0.4

0.6

0.8
C

o
st

L
o
ss

0.00

0.25

0.50

0.75

1.00

1.25

S
ch

ed
u
li
n
g

T
im

e
L

o
ss

Figure 5. Training plots for the MetaNet model on the validation set. The
model converges in 30 training epochs.

Here, φ̂ and ω̂ consists of estimates φ̂k, ω̂k for each scheduling
policy pk ∈ P . As we keep a static size set P , φ̂, ω̂ are vector-
like outputs. The Sigmoid operation gives an estimate in the
normalized form, belonging to the range (0, 1) [32]. Thus,
for any input (W,H,S), the complete neural network can be
described as

φ̂, ω̂ = fθ(W,H,S) (10)

C. Offline Training of MetaNet

To train the above described MetaNet neural network fθ, we
collect traces from a cloud computing environment. To collect
data for training, we execute the scheduling policies P , each
for Γ scheduling intervals, and collect a dataset as a collection
of tuples

Λ = {(k,Wt−1, Ht−1, St−1, φ
k
t , ω

k
t)}Γ·qt=1, (11)

where q is the number of scheduling policies in P . We
initialize W0 as H0 zero-matrices and S0 as an empty graph.
As the cost and scheduling time in the dataset are not in the
range (0, 1) as in the output of the neural network, we also
find the maximum of these two variables as

φkmax =
Γ·q

max
t=1

φkt ,

ωkmax =
Γ·q

max
t=1

ωkt .
(12)

This allows us to denormalize the neural network output
and bring it to the same range as the one in the dataset.
However, this is sensitive to the outliers in the data. We
thus perform outlier removal using the Local Outlier Factor
(LOF) approach [33] prior to obtaining these denormalizaing
coefficients.

Considering we now have a dataset Λ collected as shown
in (11), for each datapoint (k,W,H, S, φk, ωk), we define two
loss functions: cost loss LC and scheduling time loss LS as

LC = ‖φk − φkmax · φ̂k‖2,
LS = ‖ωk − ωkmax · ω̂k‖2,

(13)

where φ̂, ω̂ = fθ(W,H, T). The cost loss, LC , is an L2-norm
between the ground-truth execution cost and the denormalized
predicted cost for scheduler pk as φkmax · φ̂k. Similarly, the

Algorithm 1 The MetaNet scheduler
Require:

Pre-trained surrogate model fθ
Dataset used for training Λ
Set of schedulers P

1: procedure METANET(scheduling interval It)
2: if (t == 0)
3: Initialize matrices H0,W0 as zero
4: Initialize S0 as empty graph
5: Initialize φkmax, ω

k
max as per (12)

6: Get Wt−1, Ht−1, St−1

7: Select host hκ as κ = arg minj c̄
j
t−1 to run MetaNet

8: φ̂t, ω̂t ← fθ(Wt−1, Ht−1, St−1)
9: π = arg mink φ

k
max · φ̂kt = ωkmax · ω̂kt

10: St = pπ(t)
11: Schedule tasks using St
12: Get Wt, Ht, St, φ

π
t , ω

π
t

13: Fine-tune fθ with loss
L = ‖φπ − φπmax · φ̂π‖2 + ‖ωπ − ωπmax · ω̂π‖2,
where φ̂, ω̂ ← fθ(Wt, Ht, St)

14: return St

scheduling time cost, LS , is the L2-norm between ground-truth
scheduling time and predicted scheduling time ωkmax · ω̂k.

To train the MetaNet neural model, we use the cumulative
loss as the sum of the cost loss and scheduling time loss as

L = LC + LC , (14)

to train the model. We use the AdamW optimizer [34] with
a learning rate 0.005 and randomly sample 80% of data
to get the training set and the rest as the validation set.
We use a weight regularization parameter as 10−5 to avoid
overfitting [35]. All model training is performed on a separate
server with this configuration: Intel Xeon Silver 2.20-3.00 GHz
CPU, 16GB RAM, Nvidia RTX 3090 and Ubuntu 18.04 LTS
OS. We use the early-stopping as the convergence criterion
wherein we stop the training as soon as we see the validation
loss increase. Using this procedure, we get a trained neural
network fθ that acts as a surrogate of the execution cost and
scheduling time of all policies in P . The trends of cost loss
and scheduling time loss for the dataset collected from policies
and setup described in Section IV are shown in Figure 5. The
plot shows that the model converges in 30 epochs for this
setup. For a new setup with a different set of policies, the
model would need to be retrained or fine-tuned using one of
the transfer learning methods [36].

D. Dynamic Policy Selection Using MetaNet

Using a surrogate model fθ that has been trained offline using
the dataset as described in Section III-C, we now describe how
to dynamically select scheduling policies to optimize the total
cost of a cloud computing platform. A summary is given in
Algorithm 1. We first store the saved surrogate model fθ into
a central network-attached-storage (NAS) that is accessible to
all worker nodes. At start the scheduling interval It, we get

5

Table II
HOST CHARACTERISTICS OF MICROSOFT AZURE DISTRIBUTED CLOUD ENVIRONMENT.

Name Quantity Core MIPS RAM RAM Ping Network Disk Cost Location
count Bandwidth time Bandwidth Bandwidth Model

Private Cloud Layer

Azure B2s server 4 / 20 / 40 2 4029 4295 MB 372 MB/s 3 ms 1000 MB/s 13.4 MB/s 0.0472 $/hr London, UK
Azure B4ms server 2 / 10 / 20 4 8102 17180 MB 360 MB/s 3 ms 1000 MB/s 10.3 MB/s 0.1890 $/hr London, UK

Public Cloud Layer

Azure B4ms server 2 / 10 / 20 4 8102 17180 MB 360 MB/s 76 ms 1000 MB/s 10.3 MB/s 0.166 $/hr Virginia, USA
Azure B8ms server 2 / 10 / 20 8 2000 34360 MB 376 MB/s 76 ms 2500 MB/s 11.64 MB/s 0.333 $/hr Virginia, USA

the workload and host characteristics Wt−1, Ht−1 with the
scheduling decision St−1 (line 6 in Alg. 1). In our setup, as
we do not have any broker node, we run the MetaNet model
in the worker node with the least CPU utilization (line 7 in
Alg. 1). On this worker node we use the surrogate model to
predict cost and scheduling time (line 8) as

φ̂t, ω̂t = fθ(Wt−1, Ht−1, St−1). (15)

The scheduling policy is then decided (line 9) as

pπ, s.t. π = arg min
k

φkmax · φ̂kt + ωkmax · ω̂kt . (16)

With the decided scheduling policy pπ , the scheduling decision
for interval It is then St = pπ(t) (line 10). With the execution
of scheduling decision St, we can now also generate another
datapoint (π,Wt, Ht, St, φ

π
t , ω

π
t) as per the running cost (ωπt)

and scheduling time (φπt). We can utilize this datapoint to fine-
tune the MetaNet surrogate (line 13) using the loss function

L = ‖φπ − φπmax · φ̂π‖2 + ‖ωπ − ωπmax · ω̂π‖2, (17)

similar to the loss function described (13). This allows us to
adapt the model with changing workload or host characteristics
in the environment. The volatility in the environment can
be present due to mobility of the users or dynamism in the
workload characteristics. Periodic model fine-tuning facilitates
optimum performance of the surrogate model even in when the
environment characteristics change with time.

Overall, MetaNet selects a scheduling policy on-the-fly as
per the system states. To do this, at the start of each scheduling
interval, it predicts the task execution cost and scheduling time
of each policy. It then selects the one with the minimum cost
estimate.

IV. EXPERIMENTS

A. Implementation and Model Training

To implement MetaNet, we build upon the execution primi-
tives provided by the COSCO framework [8] by modifying
and integrating with custom resource provisioning methods,
specifically for dynamic selection of the scheduling policies.
Further, we use HTTP RESTful APIs for communication and
seamless integration of a Flask based web environment to
deploy and monitor the resource utilization characteristics
of running workloads in our distributed cloud setup [37].

Our tasks are executed using Docker containers. We use
the Checkpoint/Restore In Userspace (CRIU) [38] tool for
container migration when scheduling decision of a task in
terms of the host it is to be placed on for any interval is
different from the previous interval. All sharing of resource
utilization characteristics across worker nodes to execute the
uses the rsync1 utility. We extend the Framework class
to allow decentralized decision making. We utilize the HTTP
Notification API to synchronize outputs and execute work-
loads. All schedulers are converted to serverless functions and
deployed on Azure Serverless Platform using the RADON
framework [39]. We collect the dataset Λ by executing all
baselines described in Section IV-D for Γ = 100 intervals,
with the neural network training time of 17 minutes. Similarly,
we execute all approaches for T = 1000 scheduling intervals
to generate QoS scores, with each interval being ∆ = 10
seconds long, giving a total experiment time of nearly 2 hours
46 minutes.

B. Setup

We consider the complete set of hosts H to be static with time
as is common in prior work for a fixed cloud platform [7], [18],
[24]. We use diverse VM types, in our cloud infrastructure,
i.e., B2s with a dual-core CPU and 4GB RAM, B4ms with
a quad-core CPU and 16GB RAM and B8ms with an octa-
core CPU and 32 GB RAM. We consider a geographically
distributed cloud environment with 10, 50 and 100 VMs to test
the efficacy of the approaches at different scales. A summary
is presented in Table II. Our environment consists of up to
60 VMs in the UK-South Azure datacenter and up to 40 in
the East-US datacenter. This geographically distributed and
heterogeneous environment is chosen as per prior work [8],
[28], [40]. To save on costs, we define a host to be active
when the CPU utilization is > 0%. We use the Azure
Automation2 service to auto-hibernate and resume VMs
based on the CPU utilization of the VMs.

The maximum possible IPS of host machines were set as
per the resultant IPS from running the sysbench3 CPU

1RSync: https://linux.die.net/man/1/rsync.
2Azure Automation Service: https://azure.microsoft.com/

en-us/services/automation/#overview.
3Sysbench: http://manpages.ubuntu.com/manpages/

trusty/man1/sysbench.1.html.

6

https://linux.die.net/man/1/rsync
https://azure.microsoft.com/en-us/services/automation/#overview
https://azure.microsoft.com/en-us/services/automation/#overview
http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html

benchmarking tool, RAM and Disk capacities as per the Azure
cloud VM specifications. We calculate the IPS, RAM and Disk
utilizations, i.e., cit, r

i
t, s

i
t for task wit and c̄jt , r̄

j
t , s̄

j
t for host

hj using the Docker Inspect4 utility in Python and the
iozone5 linux benchmarking tool. The costs µj are taken
from Azure VM pricing calculator6 for the UK-South and
East-US Azure datacenters. The serverless Azure cost, ρ, is
taken from the Azure Serverless pricing calculator7. The power
consumption values of increments of 10% CPU utilization
of Azure VM types are taken from Standard Performance
Evaluation Corporation (SPEC) benchmark repository8.

C. Workloads

To generate the tasks in our system, we use the AIoTBench
applications [41]. AIoTBench is an AI based cloud com-
puting benchmark suite that consists of various real-world
computer vision application instances. The seven specific ap-
plication types correspond to the neural networks they utilize.
These include three typical heavy-weight networks: ResNet18,
ResNet34, ResNext32x4d, as well as four light-weight net-
works: SqueezeNet, GoogleNet, MobileNetV2, MnasNet.9

This benchmark has been used in our experiments due to its
volatile utilization characteristics and heterogeneous resource
requirements. The benchmark consists of 50,000 images from
the COCO dataset as workloads [42]. To evaluate the proposed
method in a controlled environment, we abstract out the users
and IoT layers described in Section III and use a discrete
probability distribution to realize tasks as container instances.
Thus, at the start of each scheduling interval, we create
new tasks from a Poisson distribution with rate λ = 1.2,
sampled uniformly from the seven applications. The Poisson
distribution is a natural choice for a bag-of-tasks workload
model, common in edge environments [28], [43]. We run all
experiments for 100 scheduling intervals, with each interval
being 300 seconds long, giving a total experiment time of 8
hours 20 minutes. We average over five runs and use diverse
workload types to ensure the statistical significance of our
experiments.

Similar to a non-stationary workload setup where the users
sending tasks are mobile, we utilize a mobility model for
sensors/actuators in our setup. To factor in the mobility of
the users that send the tasks to the cloud setup, we use the
NetLimiter tool to tweak the communication latency with
the broker node using the mobility model described in [44].
Specifically, we use the latency and bandwidth parameters of
hosts from the traces generated using the Simulation of Urban

4Docker SDK: https://docker-py.readthedocs.io/en/
stable/client.html.

5IOZone: https://linux.die.net/man/1/iozone.
6Azure VM Pricing Calculator: https://azure.microsoft.com/

en-gb/pricing/calculator/.
7Azure Serverless Pricing Calculator: https://azure.microsoft.

com/en-gb/pricing/details/functions/.
8SPEC power consumption repository: https://www.spec.org/

cloud_iaas2018/results/
9AIoTBench: https://www.benchcouncil.org/aibench/

aiotbench/index.html. Accessed: 10 May 2022.

Figure 6. Visualization of predicted costs (line plots) and dynamic scheduler
selection (background color) for top three schedulers in MetaNet.

Mobility (SUMO) tool [45] that emulates mobile vehicles in
a city like environment. SUMO gives us the parameters like
ping time and network bandwidth to simulate in our testbed
using NetLimiter.

D. Baselines

We compare MetaNet against seven baselines, which also form
our policy set P . We integrate the ACO algorithm with two
demand forecasting methods: AutoARIMA and LSTM, and
call these ARIMA+ACO and LSTM+ACO. We also include
other predict+optimize methods Decision-NN, Semi-Direct
and GRAF. We also include state-of-the-art gradient-based op-
timization methods for scheduling, GOBI and GOSH (see Sec-
tion II). Thus, P = {ARIMA+ACO, LSTM+ACO, Decision-
NN, Semi-Direct, GRAF, GOBI, GOSH}. This makes the
size of the policy set q = 7. We also use a Multi-Armed
Bandit (MAB) model using Upper-Confidence-Bound (UCB)
exploration [46] and a Deep-Q-Network (DQN) [47] that
dynamically choose a policy based on pre-trained models
using data Λ shown in (11). The DQN baseline assume
a Markov-Decision-Process (MDP) formulation wherein the
state is defined as the policy that has been selected (a one-
hot encoding corresponding to the selection) and action cor-
responds to choosing the same or a different policy at each
scheduling interval. The MAB baseline, on the other hand,
assumes a stateless input and just makes policy selection using
the UCB approach. We also include a lightweight random
policy selection method as a baseline indicating the importance
of careful policy selection at the meta level.

E. Comparison Metrics

We use the following evaluation metrics to test the efficacy of
the MetaNet model as motivated from prior works [6], [11],
[28], [48]–[50].
1) Average Cost per task which is given as

1

T

T∑
t=1

φπt

such that π is the policy used for generating the scheduling
decision.

2) Energy Consumption of an experiment is given as the
average energy consumed by all host machines in the cloud
setup as ∑

hj∈H

∫ T

t=1

Power(t, hj) ·∆dt

7

https://docker-py.readthedocs.io/en/stable/client.html
https://docker-py.readthedocs.io/en/stable/client.html
https://linux.die.net/man/1/iozone
https://azure.microsoft.com/en-gb/pricing/calculator/
https://azure.microsoft.com/en-gb/pricing/calculator/
https://azure.microsoft.com/en-gb/pricing/details/functions/
https://azure.microsoft.com/en-gb/pricing/details/functions/
https://www.spec.org/cloud_iaas2018/results/
https://www.spec.org/cloud_iaas2018/results/
https://www.benchcouncil.org/aibench/aiotbench/index.html
https://www.benchcouncil.org/aibench/aiotbench/index.html

0

1

2

3

4

5

In
te

rv
a
l

E
n

er
g
y

(K
w

-h
r)

1.0

1.5

2.0

2.5

3.0

3.5

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(a) Energy Consumption

0

5

10

15

20

R
es

p
o
n

se
T

im
e

(s
ec

o
n

d
s)

1.0

1.2

1.4

1.6

1.8

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(b) Response Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

W
a
it

in
g

T
im

e
(s

ec
o
n

d
s)

1.0

1.2

1.4

1.6

1.8

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(c) Waiting Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
L

A
V

io
la

ti
o
n

ra
te

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(d) SLA Violation Rate

0.0

0.2

0.4

0.6

0.8

J
a
in

’s
F

a
ir

n
es

s
In

d
ex

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(e) Jain’s Fairness Index

0

20

40

60

80

C
P

U
U

ti
li

za
ti

o
n

(%
)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(f) CPU Utilization

Figure 7. Comparison of QoS parameters (averaged over intervals) of MetaNet against baselines and ablated models.

A
+A

C
O

L
+A

C
O

D
-N

N
S-

D
ir

ec
t

G
R

A
F

G
O

B
I

G
O

SH
R

an
do

m
M

A
B

D
Q

N
M

G
N

N
M

D
ua

l
M

A
ttn

M
et

aN
et

10 Hosts

0.0

0.2

0.5

0.8

1.0

C
os

t(
U

SD
)

A
+A

C
O

L
+A

C
O

D
-N

N
S-

D
ir

ec
t

G
R

A
F

G
O

B
I

G
O

SH
R

an
do

m
M

A
B

D
Q

N
M

G
N

N
M

D
ua

l
M

A
ttn

M
et

aN
et

50 Hosts

A
+A

C
O

L
+A

C
O

D
-N

N
S-

D
ir

ec
t

G
R

A
F

G
O

B
I

G
O

SH
R

an
do

m
M

A
B

D
Q

N
M

G
N

N
M

D
ua

l
M

A
ttn

M
et

aN
et

100 Hosts

Cost (Task Execution) Cost (Scheduling) Cost (Selection)

Figure 8. Execution cost (in USD) per task for different number of hosts in
the cloud environment.

where Powerhj (t) is the average power of host hj in
interval It.

3) Average Response Time is the average response time of all
workloads∑T

t=1

∑
wi

t∈Wt
Response T ime(wit)∑T
t=1 nt

.

4) Average Waiting Time is the average time a task waits to
get allocated to a host∑T

t=1

∑
wi

t∈Wt
Waiting T ime(wit)∑T
t=1 nt

,

where waiting time is the sum of scheduler selection
time (in case of MetaNet), scheduling time and container
allocation time to the corresponding host.

5) SLA Violations which is given as∑T
t=1

∑
wi

t∈Wt
1(Response T ime(wit) ≤ ψ(wit))∑T

t=1 nt
,

where ψ(wit) is the 90th percentile response time for
this application type (ResNet18, ResNet34, ResNext32x4d,
SqueezeNet, GoogleNet, MobileNetV2, MnasNet) on the
state of the art baseline GOSH. This percentile-based
definition of the SLA deadline, inspired from [8], [51], is
defined for the response time metrics of completed tasks.

6) Fairness which is given as the Jain’s Fairness Index

(
∑T
t=1

∑
wi

t∈Wt
Response T ime(wit))

2

(
∑T
t=1 |Wt|)× (

∑T
t=1

∑
wi

t∈Wt
Response T ime(wit)

2)
.

7) Average CPU Utilization which is the average utilization
of CPU in percentage of all hosts∑T

t=1

∑
hj∈H c̄

j
t

T ·m
.

F. Visualization of Dynamic Policy Selection

Figure 6 visualizes the MetaNet approach running on the
setup and workloads described above. The x-axis denotes the
scheduling interval and the y-axis denotes the cost estimate
φkmax·φ̂kt +ωkmax·ω̂kt for the three most frequently used policies
in P for readability: ARIMA+ACO, GOBI and GOSH. The
highlighted bands indicate the selected scheduling policy.
The selected policy corresponds to the one with the least
estimated cost. The cost estimates are non-stationary, further
corroborating the need for dynamic selection of the scheduling
policies in volatile workload and host setups.

G. Results

Figure 7 presents the QoS metrics for all baseline models and
MetaNet for the Azure testbed with 100 hosts. Figure 8 shows
the overall cost scores for a different number of hosts in the

8

cloud environment. Across all metrics, MetaNet outperforms
the baselines. The dynamic optimization method, DQN, has
a high inference and fine-tuning time as it requires DNN
inference for each scheduler instead of a single inference in
MetaNet. This gives rise to higher selection costs for DQN
compared to MetaNet and MAB approaches (see Figure 8).
GOSH achieves the lowest energy consumption across all
baselines. MetaNet improves the energy consumption by allo-
cating tasks, i.e., to the same hosts to minimize execution costs
and consequently the active hosts in the system. This is shown
in Fig. 7(f) as the average CPU utilization of the MetaNet
approach is the highest of 87.4%. This enables MetaNet to
give an average energy consumption of 1.561 KW-hr, 42.61%
lower than the lowest baseline value of 2.720 KW-hr by
GOSH. This also allows MetaNet to provide an average cost
of up to 11% lower than the most cost-efficient approach, i.e.,
GOBI (see Fig. 8. MetaNet also gives an average response
time of 11.272 seconds, 8% lower than the best average
response time of 12.255 of the Decision-NN baseline. This
is due to the lower wait times, as is observed from Figs. 7(c).
MetaNet also gives the lowest average SLA violation rate
of 0.102, i.e., 13% lower compared to the lowest baseline
score of GOSH, which is 0.118. This is due to the lower
average response time (see Fig. 7(b)). In terms of the fairness
score, MetaNet gives the highest value of 0.893. Fig. 1 also
demonstrates that as the number of host machines in the
cloud environment increases, so does the cost gains from
the MetaNet model. Dynamic optimization baselines perform
poorly due to the stateless assumption in MAB that does not
account for environment dynamism, and DQN being slow to
adapt in volatile settings [8].

H. Ablation Analysis

To test the importance of the graph neural network, dual-
headed prediction of cost and scheduling time and self-
attention module, we modify the MetaNet neural network as
follows. First, we consider a model without the output of the
graph attention network, i.e., utilize a zero vector in the case of
ES . We call this the MetaNet GNN model. Second, instead of
predicting the cost and scheduling time separately, we produce
a single cost metric as the output of the neural network. We
call this MetaNet Dual model. Third, we replace the self-
attention module with a feed-forward network to test the
importance of temporal trends that the transformer captures.
We call this the MetaNet Attn model. The results in Figures 1
and 7 show a drop in all performance metrics for these models
when compared to MetaNet, demonstrating the effectiveness
of the scheduling decision based graph inference, independent
prediction of complementary metrics of execution cost with
scheduling time, and the attention mechanism in the neural
model.

I. Sensitivity Analysis

Figure 9 shows the performance of the MetaNet model as
we vary the number of worker nodes (hosts) in the cloud
environment. it also shows the selection frequencies of two

10 Hosts 50 Hosts 100 Hosts
0.0

0.5

1.0

1.5

In
te

rv
al

E
ne

rg
y

(K
w

-h
r)

0

5

10

15

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

0.00

0.05

0.10

SL
A

V
io

la
tio

n
ra

te

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
Se

le
ct

io
n

GOBI GOSH ARIMA+ACO

Figure 9. Sensitivity Analysis with number of cloud hosts.

light-weight schedulers: GOBI and ARIMA+ACO and a rel-
atively computationally heavier scheduler GOSH. Clearly,
with an increasing number of hosts, energy consumption also
increases. However, the response time and SLA violation rates
decreases as the load over the host machines drops as more
worker nodes are available. However, the figure shows that
as the number of hosts increases, the fraction of times the
GOSH method is selected drops significantly. This is due
to the poor scalability of the GOSH method compared to
ARIMA+ACO. This is because the GOSH approach performs
higher-order optimization over the scheduling decision. In such
cases, the MetaNet approach finds the GOSH scheduler not
worth the additional costs due to higher scheduling time. It
thus selects more straightforward methods such as GOBI and
ARIMA+ACO more frequently in such a case.

V. CONCLUSIONS

This paper proposes MetaNet, a surrogate model-based solu-
tion to dynamically select the cost-optimal scheduler at each
scheduling interval in a cloud computing environment. To do
this, it predicts estimates of the task execution costs as well
as the scheduling time for a set of scheduling policies. Such
a surrogate allows us to compute an estimate of the total cost
implications of running a scheduling policy without executing
all policies and select the one with the least cost estimate.
Periodic fine-tuning of the neural network surrogate model fa-
cilitates adaptation in dynamic workload settings. Experiments
with real-life AI-based benchmark applications on a public
cloud testbed show that MetaNet gives upto overall 11% lower
operational costs, 43% lower energy consumption, 8% lower
average response time and 13% lower SLA violation rates
compared to state-of-the-art methods. Being policy agnostic,
this method can be updated with the latest scheduling policies
or even extended to other types of resource management
problems or computing paradigms in the future [].

SOFTWARE AVAILABILITY

The code is publicly available on GitHub under BSD-
3 licence at https://github.com/imperial-qore/
MetaNet.

ACKNOWLEDGMENTS

Shreshth Tuli is supported by the President’s Ph.D. Scholarship
at the Imperial College London. We thank Shikhar Tuli for
constructive discussions.

9

https://github.com/imperial-qore/MetaNet
https://github.com/imperial-qore/MetaNet

REFERENCES

[1] S. S. Gill, S. Tuli, M. Xu, I. Singh, K. V. Singh et al., “Transformative
effects of IoT, Blockchain and Artificial Intelligence on cloud comput-
ing: Evolution, vision, trends and open challenges,” Internet of Things,
vol. 8, pp. 100–118, 2019.

[2] A. Boudi, M. Bagaa, P. Pöyhönen, T. Taleb, and H. Flinck, “AI-based
resource management in beyond 5G cloud native environment,” IEEE
Network, vol. 35, no. 2, pp. 128–135, 2021.

[3] S. Tuli, G. Casale, and N. R. Jennings, “MCDS: AI Augmented
Workflow Scheduling in Mobile Edge Cloud Computing Systems,” IEEE
Transactions on Parallel and Distributed Systems, 2022.

[4] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “Iot-based big data storage
systems in cloud computing: perspectives and challenges,” IEEE Internet
of Things Journal, vol. 4, no. 1, pp. 75–87, 2016.

[5] B. Wilder, B. Dilkina, and M. Tambe, “Melding the data-decisions
pipeline: Decision-focused learning for combinatorial optimization,” in
AAAI, vol. 33, no. 01, 2019, pp. 1658–1665.

[6] S. Tuli, S. S. Gill, M. Xu, P. Garraghan, R. Bahsoon et al., “HUNTER:
AI based holistic resource management for sustainable cloud comput-
ing,” Journal of Systems and Software, pp. 111–124, 2021.

[7] P. J. Stuckey, T. Guns, J. Bailey, C. Leckie, K. Ramamohanarao et al.,
“Dynamic programming for predict+optimise,” in AAAI, vol. 34, no. 02,
2020, pp. 1444–1451.

[8] S. Tuli, S. R. Poojara, S. N. Srirama, G. Casale, and N. R. Jennings,
“COSCO: Container Orchestration Using Co-Simulation and Gradient
Based Optimization for Fog Computing Environments,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 33, no. 1, pp. 101–116,
2022.

[9] J. Park, B. Choi, C. Lee, and D. Han, “Graf: a graph neural network
based proactive resource allocation framework for slo-oriented microser-
vices,” in Proceedings of the 17th International Conference on emerging
Networking EXperiments and Technologies, 2021, pp. 154–167.

[10] S. Tuli, G. Casale, and N. R. Jennings, “GOSH: Task Scheduling
using Deep Surrogate Models in Fog Computing Environments,” IEEE
Transactions on Parallel and Distributed Systems, 2022.

[11] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “Fogbus: A blockchain-
based lightweight framework for edge and fog computing,” Journal of
Systems and Software, 2019.

[12] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, “Cost-aware challenges
for workflow scheduling approaches in cloud computing environments:
Taxonomy and opportunities,” Future Generation Computer Systems,
vol. 50, pp. 3–21, 2015.

[13] S. Tuli, G. Casale, and N. R. Jennings, “PreGAN: Preemptive Migration
Prediction Network for Proactive Fault-Tolerant Edge Computing,” in
IEEE Conference on Computer Communications (INFOCOM). IEEE,
2022.

[14] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi et al.,
“Temporal locality in today’s content caching: Why it matters and how to
model it,” ACM SIGCOMM Computer Communication Review, vol. 43,
no. 5, pp. 5–12, 2013.

[15] S. Tuli, G. Casale, and N. R. Jennings, “TranAD: Deep Transformer
Networks for Anomaly Detection in Multivariate Time Series Data,”
arXiv preprint arXiv:2201.07284, 2022.

[16] Y. Chen and G. Casale, “Deep learning models for automated identi-
fication of scheduling policies,” in 2021 29th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS). IEEE, 2021, pp. 1–8.

[17] S. Tuli, G. Casale, and N. R. Jennings, “Learning to Dynamically
Select the Optimal Scheduler in Cloud Computing Environments,”
SIGMETRICS Perform. Eval. Rev., 2022.

[18] C. Luo, B. Qiao, X. Chen, P. Zhao, R. Yao et al., “Intelligent virtual
machine provisioning in cloud computing,” in IJCAI, 2020, pp. 1495–
1502.

[19] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

[20] J. Chen and Y. Wang, “A resource demand prediction method based on
eemd in cloud computing,” Procedia Computer Science, vol. 131, pp.
116–123, 2018.

[21] P. Singh, P. Gupta, and K. Jyoti, “TASM: Technocrat ARIMA and SVR
model for workload prediction of web applications in cloud,” Cluster
Computing, vol. 22, no. 2, pp. 619–633, 2019.

[22] S. Ouhame, Y. Hadi, and A. Ullah, “An efficient forecasting approach for
resource utilization in cloud data center using cnn-lstm model,” Neural
Computing and Applications, pp. 1–13, 2021.

[23] M. Aliyu, M. Murali, A. Y. Gital, and S. Boukari, “Efficient meta-
heuristic population-based and deterministic algorithm for resource pro-
visioning using ant colony optimization and spanning tree,” International
Journal of Cloud Applications and Computing (IJCAC), vol. 10, no. 2,
pp. 1–21, 2020.

[24] C. Luo, B. Qiao, W. Xing, X. Chen, P. Zhao et al., “Correlation-aware
heuristic search for intelligent virtual machine provisioning in cloud
systems,” in AAAI, vol. 35, no. 14, 2021, pp. 12 363–12 372.

[25] S. Nandi, S. Ghosh, S. S. Tambe, and B. D. Kulkarni, “Artificial neural-
network-assisted stochastic process optimization strategies,” AIChE jour-
nal, vol. 47, no. 1, pp. 126–141, 2001.

[26] S. Tuli, G. Casale, and N. R. Jennings, “CAROL: Confidence-Aware
Resilience Model for Edge Federations,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2022.

[27] E. Wong and J. Z. Kolter, “Neural network inversion beyond gradient
descent,” Advances in Neural Information Processing Systems, Workshop
on Optimization for Machine Learning, 2017.

[28] D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan, “Learn-as-
you-go with megh: Efficient live migration of virtual machines,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 8, pp.
1786–1801, 2019.

[29] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò et al.,
“Graph Attention Networks,” International Conference on Learning
Representations, 2018.

[30] Y. Xie, Y. Zhang, M. Gong, Z. Tang, and C. Han, “Mgat: Multi-view
graph attention networks,” Neural Networks, vol. 132, pp. 180–189,
2020.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al.,
“Attention is all you need,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 6000–
6010.

[32] B. Karlik and A. V. Olgac, “Performance analysis of various activation
functions in generalized mlp architectures of neural networks,” Inter-
national Journal of Artificial Intelligence and Expert Systems, vol. 1,
no. 4, pp. 111–122, 2011.

[33] O. Alghushairy, R. Alsini, T. Soule, and X. Ma, “A review of local
outlier factor algorithms for outlier detection in big data streams,” Big
Data and Cognitive Computing, vol. 5, no. 1, p. 1, 2020.

[34] N. Saleh and M. Mashaly, “A dynamic simulation environment for
container-based cloud data centers using containercloudsim,” in 2019
Ninth International Conference on Intelligent Computing and Informa-
tion Systems (ICICIS). IEEE, 2019, pp. 332–336.

[35] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” Advances in neural information
processing systems, vol. 28, 2015.

[36] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[37] M. Grinberg, Flask web development: developing web applications with
python. “ O’Reilly Media, Inc.”, 2018.

[38] R. S. Venkatesh, T. Smejkal, D. S. Milojicic, and A. Gavrilovska, “Fast
in-memory criu for docker containers,” in The International Symposium
on Memory Systems, 2019, pp. 53–65.

[39] G. Casale, M. Artač, W.-J. van den Heuvel, A. van Hoorn, P. Jakovits
et al., “Radon: rational decomposition and orchestration for serverless
computing,” SICS Software-Intensive Cyber-Physical Systems, vol. 35,
no. 1, pp. 77–87, 2020.

[40] S. Tuli, N. Basumatary, and R. Buyya, “Edgelens: Deep learning based
object detection in integrated iot, fog and cloud computing environ-
ments,” arXiv preprint arXiv:1906.11056, 2019.

[41] C. Luo, F. Zhang, C. Huang, X. Xiong, J. Chen et al., “Aiot bench:
towards comprehensive benchmarking mobile and embedded device
intelligence,” in International Symposium on Benchmarking, Measuring
and Optimization. Springer, 2018, pp. 31–35.

[42] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona et al., “Microsoft
coco: Common objects in context,” in European conference on computer
vision. Springer, 2014, pp. 740–755.

[43] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

10

[44] K. Gilly, S. Alcaraz, N. Aknin, S. Filiposka, and A. Mishev, “Modelling
edge computing in urban mobility simulation scenarios,” in 2020 IFIP
Networking Conference (Networking). IEEE, 2020, pp. 539–543.

[45] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of sumo-simulation of urban mobility,”
International journal on advances in systems and measurements, vol. 5,
no. 3&4, 2012.

[46] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” arXiv:1402.6028, 2014.

[47] Y. Li, “Deep reinforcement learning: An overview,” arXiv:1701.07274,
2017.

[48] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic
Scheduling for Stochastic Edge-Cloud Computing Environments using
A3C learning and Residual Recurrent Neural Networks,” IEEE Trans-
actions on Mobile Computing, 2020.

[49] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.

[50] A. Mirhosseini, S. Elnikety, and T. F. Wenisch, “Parslo: A gradient
descent-based approach for near-optimal partial slo allotment in mi-
croservices,” in Proceedings of the ACM Symposium on Cloud Com-
puting, 2021, pp. 442–457.

[51] K. Boloor, R. Chirkova, Y. Viniotis, and T. Salo, “Dynamic request
allocation and scheduling for context aware applications subject to a
percentile response time sla in a distributed cloud,” in 2010 IEEE Second
International Conference on Cloud Computing Technology and Science.
IEEE, 2010, pp. 464–472.

11

	I Introduction
	II Related Work
	III Methodology
	III-A System Model and Problem Formulation
	III-B MetaNet Model
	III-C Offline Training of MetaNet
	III-D Dynamic Policy Selection Using MetaNet

	IV Experiments
	IV-A Implementation and Model Training
	IV-B Setup
	IV-C Workloads
	IV-D Baselines
	IV-E Comparison Metrics
	IV-F Visualization of Dynamic Policy Selection
	IV-G Results
	IV-H Ablation Analysis
	IV-I Sensitivity Analysis

	V Conclusions
	References

