14 research outputs found

    Antigenic landscapes on Staphylococcus aureus pore-forming toxins reveal insights into specificity and cross-neutralization

    Get PDF
    Staphylococcus aureus carries an exceptional repertoire of virulence factors that aid in immune evasion. Previous single-target approaches for S. aureus-specific vaccines and monoclonal antibodies (mAbs) have failed in clinical trials due to the multitude of virulence factors released during infection. Emergence of antibiotic-resistant strains demands a multi-target approach involving neutralization of different, non-overlapping pathogenic factors. Of the several pore-forming toxins that contribute to S. aureus pathogenesis, efforts have largely focused on mAbs that neutralize α-hemolysin (Hla) and target the receptor-binding site. Here, we isolated two anti-Hla and three anti-Panton-Valentine Leukocidin (LukSF-PV) mAbs, and used a combination of hydrogen deuterium exchange mass spectrometry (HDX-MS) and alanine scanning mutagenesis to delineate and validate the toxins’ epitope landscape. Our studies identified two novel, neutralizing epitopes targeted by 2B6 and CAN6 on Hla that provided protection from hemolytic activity in vitro and showed synergy in rodent pneumonia model against lethal challenge. Of the anti-LukF mAbs, SA02 and SA131 showed specific neutralization activity to LukSF-PV while SA185 showed cross-neutralization activity to LukSF-PV, γ-hemolysin HlgAB, and leukotoxin ED. We further compared these antigen-specific mAbs to two broadly neutralizing mAbs, H5 (targets Hla, LukSF-PV, HlgAB, HlgCB, and LukED) and SA185 (targeting LukSF-PV, HlgAB, and LukED), and identified molecular level markers for broad-spectrum reactivity among the pore-forming toxins by HDX-MS. To further underscore the need to target the cross-reactive epitopes on leukocidins for the development of broad-spectrum therapies, we annotated Hla sequences isolated from patients in multiple countries for genomic variations within the perspective of our defined epitopes

    Evidence of Neutralizing and Non-Neutralizing Anti-Glucosaminidase Antibodies in Patients With S. Aureus Osteomyelitis and Their Association With Clinical Outcome Following Surgery in a Clinical Pilot

    Get PDF
    Staphylococcus aureus osteomyelitis remains a very challenging condition; recent clinical studies have shown infection control rates following surgery/antibiotics to be ~60%. Additionally, prior efforts to produce an effective S. aureus vaccine have failed, in part due to lack of knowledge of protective immunity. Previously, we demonstrated that anti-glucosaminidase (Gmd) antibodies are protective in animal models but found that only 6.7% of culture-confirmed S. aureus osteomyelitis patients in the AO Clinical Priority Program (AO-CPP) Registry had basal serum levels (>10 ng/ml) of anti-Gmd at the time of surgery (baseline). We identified a small subset of patients with high levels of anti-Gmd antibodies and adverse outcomes following surgery, not explained by Ig class switching to non-functional isotypes. Here, we aimed to test the hypothesis that clinical cure following surgery is associated with anti-Gmd neutralizing antibodies in serum. Therefore, we first optimized an in vitro assay that quantifies recombinant Gmd lysis of the M. luteus cell wall and used it to demonstrate the 50% neutralizing concentration (NC50) of a humanized anti-Gmd mAb (TPH-101) to be ~15.6 μg/ml. We also demonstrated that human serum deficient in anti-Gmd antibodies can be complemented by TPH-101 to achieve the same dose-dependent Gmd neutralizing activity as purified TPH-101. Finally, we assessed the anti-Gmd physical titer and neutralizing activity in sera from 11 patients in the AO-CPP Registry, who were characterized into four groups post-hoc. Group 1 patients (n=3) had high anti-Gmd physical and neutralizing titers at baseline that decreased with clinical cure of the infection over time. Group 2 patients (n=3) had undetectable anti-Gmd antibodies throughout the study and adverse outcomes. Group 3 (n=3) had high titers +/− neutralizing anti-Gmd at baseline with adverse outcomes. Group 4 (n=2) had low titers of non-neutralizing anti-Gmd at baseline with delayed high titers and adverse outcomes. Collectively, these findings demonstrate that both neutralizing and non-neutralizing anti-Gmd antibodies exist in S. aureus osteomyelitis patients and that screening for these antibodies could have a value for identifying patients in need of passive immunization prior to surgery. Future prospective studies to test the prognostic value of anti-Gmd antibodies to assess the potential of passive immunization with TPH-101 are warranted

    A Critical Role for HlgA in Staphylococcus aureus Pathogenesis Revealed by A Switch in the SaeRS Two-Component Regulatory System

    Get PDF
    Cytolytic pore-forming toxins including alpha hemolysin (Hla) and bicomponent leukotoxins play an important role in the pathogenesis of Staphylococcus aureus. These toxins kill the polymorphonuclear phagocytes (PMNs), disrupt epithelial and endothelial barriers, and lyse erythrocytes to provide iron for bacterial growth. The expression of these toxins is regulated by the two-component sensing systems Sae and Agr. Here, we report that a point mutation (L18P) in SaeS, the histidine kinase sensor of the Sae system, renders the S. aureus Newman hemolytic activity fully independent of Hla and drastically increases the PMN lytic activity. Furthermore, this Hla-independent activity, unlike Hla itself, can lyse human erythrocytes. The Hla-independent activity towards human erythrocytes was also evident in USA300, however, under strict agr control. Gene knockout studies revealed that this Hla-independent Sae-regulated activity was entirely dependent on gamma hemolysin A subunit (HlgA). In contrast, hemolytic activity of Newman towards human erythrocytes from HlgAB resistant donors was completely dependent on agr. The culture supernatant from Newman S. aureus could be neutralized by antisera against two vaccine candidates based on LukS and LukF subunits of Panton-Valentine leukocidin but not by an anti-Hla neutralizing antibody. These findings display the complex involvement of Sae and Agr systems in regulating the virulence of S. aureus and have important implications for vaccine and immunotherapeutics development for S. aureus disease in humans

    Antibodies to <i>S</i>. <i>aureus</i> LukS-PV Attenuated Subunit Vaccine Neutralize a Broad Spectrum of Canonical and Non-Canonical Bicomponent Leukotoxin Pairs

    No full text
    <div><p><i>S</i>. <i>aureus</i> vaccine development has proven particularly difficult. The conventional approach to achieve sterile immunity through opsonophagocytic killing has been largely unsuccessful. <i>S</i>. <i>aureus</i> is highly toxigenic and a great body of evidence suggests that a successful future vaccine for this organism should target extracellular toxins which are responsible for host tissue destruction and immunosuppression. Major staphylococcal toxins are alpha toxin (a single subunit hemolysin) along with a group of bicomponent pore-forming toxins (BCPFT), namely Panton-Valentine leukocidin (PVL), gamma hemolysins (HlgCB and AB), LukAB and LukED. In our previous report, an attenuated mutant of LukS-PV (PVL- S subunit) named as “LukS-mut9” elicited high immunogenic response as well as provided a significant protection in a mouse sepsis model. Recent discovery of PVL receptors shows that mice lack receptors for this toxin, thus the reported protection of mice with the PVL vaccine may relate to cross protective responses against other homologous toxins. This manuscript addresses this issue by demonstrating that polyclonal antibody generated by LukS-mut9 can neutralize other canonical and non-canonical leukotoxin pairs. In this report, we also demonstrated that several potent toxins can be created by non-canonical pairing of subunits. Out of 5 pairs of canonical and 8 pairs of non-canonical toxins tested, anti-LukS-mut9 polyclonal antibodies neutralized all except for LukAB. We also studied the potential hemolytic activities of canonical and noncanonical pairs among biocomponent toxins and discovered that a novel non-canonical pair consisting of HlgA and LukD is a highly toxic combination. This pair can lyse RBC from different species including human blood far better than alpha hemolysin. Moreover, to follow-up our last report, we explored the correlation between the levels of pre-existing antibodies to new sets of leukotoxins subunits and clinical outcomes in adult patients with <i>S</i>. <i>aureus</i> bacteremia. We found that there is an inversed correlation between the antibody titer to sepsis for leukotoxins LukS-mut9, LukF-PV, HlgC, LukE and LukAB, suggesting the risk of sepsis was significantly lower in the patients with higher antibody titer against those toxins.</p></div

    ELISA of clinical samples classified into sepsis and nonsepsis based on clinical outcome.

    No full text
    <p>Individual toxin subunits as indicated above the each panel were coated over night at 4°C. Human serum samples were diluted to 1:10,000 in PBS with 1% milk. Goat anti human HRP conjugate diluted to 1:2,000 was used as secondary antibody.</p

    Noncanonical sub units: HlgA and LukD hemolysis studies.

    No full text
    <p>Lysis was measured at 416 nm. <b><i>A</i></b>) Hemolytic dose response plot in 2% RBC (final concentration) from different species of blood. <b><i>B</i></b>) Dose response plot in 2% rabbit RBC with all possible combination of HlgA and LukD showing that only HlgA + LukD makes a potent hemolytic pair. <b><i>C</i></b>) Comparative dose response plot between alpha toxin and HlgA + LukD in 2% rabbit RBC. <b><i>D</i></b>) Timed hemolysis between alpha toxin and HlgA + LukD in 2% rabbit RBC.</p

    Rabbit anti-LukS-Mut9 antisera in 1:24 dilution neutralized PMN lytic activity induced by either canonical pairs or noncanonical pairs.

    No full text
    <p>Neutralization of: <b><i>A)</i></b> Canonical pair with 8.2 nM toxin concentration <b><i>B)</i></b> Noncanonical pair with 8.2 nM toxin concentration <b><i>C)</i></b> Noncanonical pair with 16.4 nM toxin concentration.</p

    Comparative studies between alpha hemolysin and HlgA+ LukD in whole blood assay from different species.

    No full text
    <p>Blood from different species are indicated above the each panel. The assay was done in a whole blood (without washing with PBS) incubating with different concentration of toxin at 37°C for 30 or 45 min as descrided in method section.</p

    SDS-PAGE and Western blot of different subunits.

    No full text
    <p><b><i>A)</i></b> SDS PAGE, <b><i>B)</i></b> Western blot with Rabbit anti- LukS-WT polyclonal, <b><i>C)</i></b> Western blot with Rabbit anti-LukS-mut9 polyclonal, <b><i>D)</i></b> Western blot with Rabbit anti-LukF-WT polyclonal.</p
    corecore