96 research outputs found

    The Influence of Exercise Dose, Exercise Intensity, and Weight Loss and Change in C-Reactive Protein in Sedentary Overweight Women

    Get PDF
    Objective: To examine the effect physical activity included in a weight loss program has on high sensitivity C-reactive protein (hs-CRP) levels in sedentary overweight women. Design, Setting, and Participants: This study examined the change in hs-CRP in overweight and obese women in response to a 6 month behavioral weight loss program. The parent study was a randomized trial involving 201 sedentary overweight women who participated in a weight control program, with data from 182 subjects available for this secondary analysis. Methods: Participants were randomly assigned to 1 of 4 exercise groups based on energy expenditure (1000kcal/week or 2000 kcal/week) and intensity (vigorous vs. moderate). Groups included: vigorous intensity/high dose; vigorous intensity/moderate dose; moderate intensity/moderate dose; and moderate intensity/high dose. Participants were prescribed an energy restricted diet consisting of 1200 kcal/day or 1500 kcal/day and daily dietary fat intake between 20%-30% of total energy intake. Results: There were no statistically significant differences between dose of exercise, moderate vs. high, (F=0.330, p=0.58) or level of intensity, moderate vs. vigorous (F=0.118, p=0.731) for change in hs-CRP. However, there was a significant decrease in hs-CRP from baseline to 6 months (F=25.553, p<0.0004); there was a significant 3 way interaction between energy expenditure, intensity, and Pre/Post differences (F=4.035, p=0.035), post hoc analysis revealed a significant decrease in hs-CRP in the moderate/high (p<0.0004) and vigorous/moderate groups (p=004). The results were unchanged after controlling for the change in body weight, body fatness, or body distribution. The change in hs-CRP was not significantly correlated with the change in body weight, percent body fat, waist circumference, or self-reported physical activity. hs-CRP at 6 months was correlated with 6 month measures of weight, BMI, percent body fat, and fat distribution (p<0.0004). Conclusions: hs-CRP was reduced in overweight and obese women in response to a 6 month weight loss intervention that included a prescribed reduction in energy intake and a prescribed increase in exercise with a significant reduction in the moderate intensity/high dose and vigorous intensity/moderate dose groups. Further research is needed to determine what effect exercise and or weight loss may have on markers of inflammation

    Somatosensory Training Improves Proprioception and Untrained Motor Function in Parkinson's Disease

    Get PDF
    Background: Proprioceptive impairment is a common feature of Parkinson's disease (PD). Proprioceptive function is only partially restored with anti-parkinsonian medication or deep brain stimulation. Behavioral exercises focusing on somatosensation have been promoted to overcome this therapeutic gap. However, conclusive evidence on the effectiveness of such somatosensory-focused behavioral training for improving somatosensory function is lacking. Moreover, it is unclear, if such training has any effect on motor performance in PD.Objective: To investigate, whether proprioception improves with a somatosensory focused, robot-aided training in people with PD (PWPs), and whether enhanced proprioception translates to improved motor performance.Method: Thirteen PWPs of mild-moderate clinical severity were assessed and trained ON medication using a robotic wrist exoskeleton. Thirteen healthy elderly participants served as controls. Training involved making increasingly accurate, continuous, precise small amplitude wrist flexion/extension movements. Wrist position sense acuity, as a marker of proprioception function, and spatial error during wrist pointing, as a marker of untrained motor performance, were recorded twice before and once after training. Functional hand writing kinematics exhibited during training were evaluated in the PD group for determining training-induced changes.Results: Training improved position sense acuity in all PWPs (mean change: 28%; p &lt; 0.001) and healthy controls (mean change: 23%; p &lt; 0.01). Second, 10/13 PD participants and 10/13 healthy control participants had reduced spatial movement error in the untrained wrist pointing task after training. Third, spatial error for the functional handwriting tasks (line tracing and tracking) did not improve with training in the PD group.Conclusion: Proprioceptive function in mild to moderate PD is trainable and improves with a somatosensory-focused motor training. Learning showed a local transfer within the trained joint degree-of-freedom as improved spatial accuracy in an unpracticed motor task. No learning gains were observed for the untrained functional handwriting task, indicating that training may be specific to the trained joint degree-of-freedom

    Selenocysteine Insertion Sequence Binding Protein 2L Is Implicated as a Novel Post-Transcriptional Regulator of Selenoprotein Expression

    Get PDF
    The amino acid selenocysteine (Sec) is encoded by UGA codons. Recoding of UGA from stop to Sec requires a Sec insertion sequence (SECIS) element in the 3′ UTR of selenoprotein mRNAs. SECIS binding protein 2 (SBP2) binds the SECIS element and is essential for Sec incorporation into the nascent peptide. SBP2-like (SBP2L) is a paralogue of SBP2 in vertebrates and is the only SECIS binding protein in some invertebrates where it likely directs Sec incorporation. However, vertebrate SBP2L does not promote Sec incorporation in in vitro assays. Here we present a comparative analysis of SBP2 and SBP2L SECIS binding properties and demonstrate that its inability to promote Sec incorporation is not due to lower SECIS affinity but likely due to lack of a SECIS dependent domain association that is found in SBP2. Interestingly, however, we find that an invertebrate version of SBP2L is fully competent for Sec incorporation in vitro. Additionally, we present the first evidence that SBP2L interacts with selenoprotein mRNAs in mammalian cells, thereby implying a role in selenoprotein expression

    Assessment of Inactivating Stop Codon Mutations in Forty Saccharomyces cerevisiae Strains: Implications for [PSI+] Prion- Mediated Phenotypes

    Get PDF
    The yeast prion [PSI+] has been implicated in the generation of novel phenotypes by a mechanism involving a reduction in translation fidelity causing readthrough of naturally occurring stop codons. Some [PSI+] associated phenotypes may also be generated due to readthrough of inactivating stop codon mutations (ISCMs). Using next generation sequencing we have sequenced the genomes of two Saccharomyces cerevisiae strains that are commonly used for the study of the yeast [PSI+] prion. We have identified approximately 26,000 and 6,500 single nucleotide polymorphisms (SNPs) in strains 74-D694 and G600 respectively, compared to reference strain S288C. In addition to SNPs that produce non-synonymous amino acid changes we have also identified a number of SNPs that cause potential ISCMs in these strains, one of which we show is associated with a [PSI+]-dependent stress resistance phenotype in strain G600. We identified twenty-two potential ISCMs in strain 74-D694, present in genes involved in a variety of cellular processes including nitrogen metabolism, signal transduction and oxidative stress response. The presence of ISCMs in a subset of these genes provides possible explanations for previously identified [PSI+]-associated phenotypes in this strain. A comparison of ISCMs in strains G600 and 74-D694 with S. cerevisiae strains sequenced as part of the Saccharomyces Genome Resequencing Project (SGRP) shows much variation in the generation of strain-specific ISCMs and suggests this process is possible under complex genetic control. Additionally we have identified a major difference in the abilities of strains G600 and 74-D694 to grow at elevated temperatures. However, this difference appears unrelated to novel SNPs identified in strain 74-D694 present in proteins involved in the heat shock response, but may be attributed to other SNP differences in genes previously identified as playing a role in high temperature growth

    Haptic Perception of Object Curvature in Parkinson's Disease

    Get PDF
    The haptic perception of the curvature of an object is essential for adequate object manipulation and critical for our guidance of actions. This study investigated how the ability to perceive the curvature of an object is altered by Parkinson's disease (PD).Eight healthy subjects and 11 patients with mild to moderate PD had to judge, without vision, the curvature of a virtual "box" created by a robotic manipulandum. Their hands were either moved passively along a defined curved path or they actively explored the curved curvature of a virtual wall. The curvature was either concave or convex (bulging to the left or right) and was judged in two locations of the hand workspace--a left workspace location, where the curved hand path was associated with curved shoulder and elbow joint paths, and a right workspace location in which these joint paths were nearly linear. After exploring the curvature of the virtual object, subjects had to judge whether the curvature was concave or convex. Based on these data, thresholds for curvature sensitivity were established. The main findings of the study are: First, 9 out 11 PD patients (82%) showed elevated thresholds for detecting convex curvatures in at least one test condition. The respective median threshold for the PD group was increased by 343% when compared to the control group. Second, when distal hand paths became less associated with proximal joint paths (right workspace), haptic acuity was reduced substantially in both groups. Third, sensitivity to hand trajectory curvature was not improved during active exploration in either group.Our data demonstrate that PD is associated with a decreased acuity of the haptic sense, which may occur already at an early stage of the disease

    The dpsA Gene of Streptomyces coelicolor: Induction of Expression from a Single Promoter in Response to Environmental Stress or during Development

    Get PDF
    The DpsA protein plays a dual role in Streptomyces coelicolor, both as part of the stress response and contributing to nucleoid condensation during sporulation. Promoter mapping experiments indicated that dpsA is transcribed from a single, sigB-like dependent promoter. Expression studies implicate SigH and SigB as the sigma factors responsible for dpsA expression while the contribution of other SigB-like factors is indirect by means of controlling sigH expression. The promoter is massively induced in response to osmotic stress, in part due to its sensitivity to changes in DNA supercoiling. In addition, we determined that WhiB is required for dpsA expression, particularly during development. Gel retardation experiments revealed direct interaction between apoWhiB and the dpsA promoter region, providing the first evidence for a direct WhiB target in S. coelicolor

    Elevated Pontine and Putamenal GABA Levels in Mild-Moderate Parkinson Disease Detected by 7 Tesla Proton MRS

    Get PDF
    Background: Parkinson disease (PD) is characterized by the degeneration of nigrostriatal dopaminergic neurons. However, postmortem evidence indicates that the pathology of lower brainstem regions, such as the pons and medulla, precedes nigral involvement. Consistently, pontomedullary damage was implicated by structural and PET imaging in early PD. Neurochemical correlates of this early pathological involvement in PD are unknown. Methodology/Principal Finding: To map biochemical alterations in the brains of individuals with mild-moderate PD we quantified neurochemical profiles of the pons, putamen and substantia nigra by 7 tesla (T) proton magnetic resonance spectroscopy. Thirteen individuals with idiopathic PD (Hoehn &amp; Yahr stage 2) and 12 age- and gender-matched healthy volunteers participated in the study. c-Aminobutyric acid (GABA) concentrations in the pons and putamen were significantly higher in patients (N = 11, off medications) than controls (N = 11, p,0.001 for pons and p,0.05 for putamen). The GABA elevation was more pronounced in the pons (64%) than in the putamen (32%). No other neurochemical differences were observed between patients and controls. Conclusion/Significance: The GABA elevation in the putamen is consistent with prior postmortem findings in patients with PD, as well as with in vivo observations in a rodent model of PD, while the GABA finding in the pons is novel. The more significant GABA elevation in the pons relative to the putamen is consistent with earlier pathological involvement of th
    corecore