10 research outputs found

    A viral expression factor behaves as a prion

    Get PDF
    Prions are proteins that can fold into multiple conformations some of which are self-propagating. Such prion-forming proteins have been found in animal, plant, fungal and bacterial species, but have not yet been identified in viruses. Here we report that LEF-10, a baculovirus-encoded protein, behaves as a prion. Full-length LEF-10 or its candidate prion-forming domain (cPrD) can functionally replace the PrD of Sup35, a widely studied prion-forming protein from yeast, displaying a [PSI+]-like phenotype. Furthermore, we observe that high multiplicity of infection can induce the conversion of LEF-10 into an aggregated state in virus-infected cells, resulting in the inhibition of viral late gene expression. Our findings extend the knowledge of current prion proteins from cellular organisms to non-cellular life forms and provide evidence to support the hypothesis that prion-forming proteins are a widespread phenomenon in nature

    Structural Heterogeneity in Polynucleotide-Facilitated Assembly of Phenothiazine Dyes

    No full text
    The assembly of stacked dyes on DNA is of interest for electron transfer, light harvesting, sensing, and catalysis applications. A combination of UV/vis absorption, linear dichroism (LD), and circular dichroism (CD) was applied to characterize thoroughly the aggregation with DNA of the phenothiazine dyes methylene blue, azure B, and thionine. Aggregates of each dye with [poly­(dG-dC)]<sub>2</sub>, [poly­(dA-dT)]<sub>2</sub>, and calf thymus DNA were explored at high dye:DNA binding ratios, where excess dye groove-binds after all intercalation sites are filled. The organization of the aggregates (dimers, trimers, and multimers) with polydeoxynucleotides displays a structural diversity that depends on DNA sequence, extent of methylation of dye exocyclic amine groups, and ionic strength. The dyes typically form right-handed H-aggregates having negative LD, consistent with stepped stacking along the minor groove. However, aggregates in some dye:DNA aggregates show left-handed chirality or positive LD, indicating unusual modes of aggregation such as formation of adventitious dimers between intercalated and minor groove bound dye. In terms of sequence-dependence, methylene blue shows more extensive aggregation with [poly­(dA-dT)]<sub>2</sub>, while thionine aggregates more with [poly­(dG-dC)]<sub>2</sub>. Azure B has distinctive behavior that is unlike either other dyes. Thus, although these phenothiazine dyes possess a common tricyclic framework, the organization of their polynucleotide-facilitated aggregates depends sensitively on the extent of methylation of the exocyclic amines

    Diastereomeric Crowding Effects in the Competitive DNA Intercalation of Ru(phenanthroline)2dipyridophenazine2+ Enantiomers

    No full text
    The biexponential excited-state emission decay characteristic of DNA intercalated tris-bidentate dppz-based ruthenium complexes of the general form Ru(L)2dppz2+ has previously been explained by a binding model with two distinct geometry orientations of the bound ligands, with a distinct lifetime associated with each orientation. However, it has been found that upon DNA binding of Ru(phen)2dppz2+ the fractions of short and long lifetimes are strongly dependent on environmental factors such as salt concentration and, in particular, temperature. Analyzing isothermal titration calorimetry for competitive binding of Ru(phen)2dppz2+ enantiomers to poly(dAdT)2, we find that a consistent binding model must assume that the short and long lifetimes states of intercalated complexes are in equilibrium and that this equilibrium is altered when neighboring bound ligands affect each other. The degree of intercomplex binding is found to be a subtle manifestation of several attractive and repulsive factors that are highly likely to directly reflect the strong diastereomeric difference in the binding enthalpy and entropy values. In addition, as the titration progresses and the binding sites on the DNA lattice become increasingly occupied, a general resistance for the saturation of the binding sites is observed, suggesting diastereomeric crowding of the neighboring bound ligands

    Effects of intercalators on complexation of RecA with duplex DNA

    No full text
    To elucidate the binding mode of recombination protein A (RecA) to double-stranded (ds) DNA, the effects on the RecA-DNA interaction of several mono- and bisintercalators of the acridine, phenanthridine, and cyanine classes have been investigated by linear dichroism spectroscopy. Simple monointercalators lacking side chains efficiently promoted the binding of RecA to dsDNA in the absence of nucleotide cofactor, which is otherwise required. Bisintercalators varied in their ability to induce RecA binding, while monointercalators with aminoalkyl side chains proved inefficient. Modification of DNA structure by the intercalator appears to be necessary for induction of RecA binding, but if the intercalator has a bulky minor-groove-binding side chain, it does not induce RecA binding. In detailed studies with acridines, neither the binding geometry of intercalators nor the structure of DNA was significantly modified upon binding of RecA without cofactor. Judged by circular dichroism, similar ReA conformational changes accompanied bis-9-aminoacridine- and ATPyS-induced RecA association with DNA. In the presence of ATPyS, the intercalators inhibited the rate of RecA binding to dsDNA and were extruded from DNA upon binding of RecA. This competitive aspect may suggest that intercalation of some amino acid residue(s) plays a role in nucleotide-induced RecA binding. The stoichiometry of the RecA-DNA-intercalator filament was determined; in the fully formed filament the base pair:intercalator ratio is 2, and the base pair:RecA ratio also 2. This contrasts with a base pair:RecA ratio of 3 in the ATPyS-induced filament, although in both cases the DNA experiences 50% extension

    Effects of minor and major groove-binding drugs and intercalators on the DNA association of minor groove-binding proteins RecA and deoxyribonuclease I detected by flow linear dichroism

    No full text
    Linear and circular dichroic spectroscopies have been employed to investigate the effects of small DNA ligands on the interactions of two proteins which bind to the minor groove of DNA, viz. RecA protein from Escherichia coli and deoxyribonuclease I (bovine pancreas). Ligands representing three specific non-covalent binding modes were investigated: 4',6-diamidino-2-phenylindole and distamycin A (minor groove binders), methyl green (major groove binder), and methylene blue, ethidium bromide and ethidium dimer (intercalators). Linear dichroism was demonstrated to be an excellent detector, in real time, of DNA double-strand cleavage by deoxyribonuclease I. Ligands bound in all three modes interfered with the deoxyribonuclease I digestion of dsDNA, although the level of interference varied in a manner which could be related to the ligand binding site, the ligand charge appearing to be less important. In particular, the retardation of deoxyribonuclease I cleavage by the major groove binder methyl green demonstrates that accessibility to the minor groove can be affected by occupancy of the opposite groove. Binding of all three types of ligand also had marked effects on the interaction of RecA with dsDNA in the presence of non-hydrolyzable cofactor adenosine 5'-O-3-thiotriphosphate, decreasing the association rate to varying extents but with the strongest effects from ligands having some minor groove occupancy. Finally, each ligand was displaced from its DNA binding site upon completion of RecA association, again demonstrating that modification of either groove can affect the properties and behaviour of the other. The conclusions are discussed against the background of previous work on the use of small DNA ligands to probe DNA-protein interactions

    Difference between active and inactive nucleotide cofactors in the effect of DNA binding and the helical structure of RecA filament

    No full text
    The RecA protein requires ATP or dATP for its coprotease and strand exchange activities. Other natural nucleotides, such as ADP, CTP, GTP, UTP and TTP, have little or no activation effect on RecA for these activities. We have investigated the activation mechanism, and the selectivity for ATP, by studying the effect of various nucleotides on the DNA binding and the helical structure of the RecA filament. The interaction with DNA was investigated via fluorescence measurements with a fluorescent DNA analog and fluorescein-labeled oligonucleotides, assisted by linear dichroism. Filament structure was investigated via small-angle neutron scattering. There is no simple correlation between filament elongation, DNA binding affinity of RecA, and DNA structure in the RecA complex. There may be multiple conformations of RecA, Both coprotease and strand exchange activities require formation of a rigid and well organized complex. The triphosphate nucleotides which do not activate RecA, destabilize the RecA-DNA complex, indicating that the chemical nature of the nucleotide nucleobase is very important for the stability of RecA-DNA complex. Higher stability of the RecA-DNA complex in the presence of adenosine 5\u27-O-3-thiotriphosphate or guanosine 5\u27-O-3-thiotriphosphate than ATP or GTP indicates that contact between the protein and the chemical group at the gamma position of the nucleotide also affects the stability of the RecA-DNA complex. This contact appears also important for the rigid organization of DNA because ADP strongly decreases the rigidity of the complex

    Difference between active and inactive nucleotide cofactors in the effect of DNA binding and the helical structure of RecA filament

    No full text
    The RecA protein requires ATP or dATP for its coprotease and strand exchange activities. Other natural nucleotides, such as ADP, CTP, GTP, UTP and TTP, have little or no activation effect on RecA for these activities. We have investigated the activation mechanism, and the selectivity for ATP, by studying the effect of various nucleotides on the DNA binding and the helical structure of the RecA filament. The interaction with DNA was investigated via fluorescence measurements with a fluorescent DNA analog and fluorescein-labeled oligonucleotides, assisted by linear dichroism. Filament structure was investigated via small-angle neutron scattering. There is no simple correlation between filament elongation, DNA binding affinity of RecA, and DNA structure in the RecA complex. There may be multiple conformations of RecA, Both coprotease and strand exchange activities require formation of a rigid and well organized complex. The triphosphate nucleotides which do not activate RecA, destabilize the RecA-DNA complex, indicating that the chemical nature of the nucleotide nucleobase is very important for the stability of RecA-DNA complex. Higher stability of the RecA-DNA complex in the presence of adenosine 5\u27-O-3-thiotriphosphate or guanosine 5\u27-O-3-thiotriphosphate than ATP or GTP indicates that contact between the protein and the chemical group at the gamma position of the nucleotide also affects the stability of the RecA-DNA complex. This contact appears also important for the rigid organization of DNA because ADP strongly decreases the rigidity of the complex

    Binding Mode of [Ruthenium(II) (1,10-Phenanthroline)2L]2+ with Poly(dT*dA-dT) Triplex. Ligand Size Effect on Third-Strand Stabilization

    No full text
    The binding of homochiral [Ru(II)(1,10-phenanthroline)(2)L](2+) complexes {where L = 1,10-phenanthroline (phen), dipyrido[3,2-a:2\u27,3\u27-c]phenazine (DPPZ) or benzodipyrido[3,2-a:2\u27,3\u27-c]phenazine (BDPPZ)} to poly(dT*dA-dT) triplex has been investigated by linear and circular dichroism and thermal denaturation. Analysis of the linear dichroism spectra indicates that the extended DPPZ and BDPPZ ligands lie approximately parallel to the base-pair and base-tripler planes consistent with intercalation which is also supported by strong hypochromism in the interligand absorption bands with either duplex or tripler. The spectral properties of any of the metal complex enantiomers were similar for binding to either duplex or tripler DNA, indicating that the third strand, which occupies the major groove of the template duplex, has little effect on the binding geometries and hence supports the hypothesis that the metal complexes all bind from the minor groove with the DPPZ and BDPPZ ligands intercalated but without intercalation in the case of [Ru(phen)(3)](2+). Third-strand stabilization depended on the nature of the third substituted phenanthroline chelate ligand but was not directly related to its size, with stabilizing power increasing in the order phe

    Role of Order in the Mechanism of Charge Transport across Single-Stranded and Double-Stranded DNA Monolayers in Tunnel Junctions

    Get PDF
    Deoxyribonucleic acid (DNA) has been hypothesized to act as a molecular wire due to the presence of an extended π-stack between base pairs, but the factors that are detrimental in the mechanism of charge transport (CT) across tunnel junctions with DNA are still unclear. Here we systematically investigate CT across dense DNA monolayers in large-area biomolecular tunnel junctions to determine when intrachain or interchain CT dominates and under which conditions the mechanism of CT becomes thermally activated. In our junctions, double-stranded DNA (dsDNA) is 30-fold more conductive than single-stranded DNA (ssDNA). The main reason for this large change in conductivity is that dsDNA forms ordered monolayers where intrachain tunneling dominates, resulting in high CT rates. By varying the temperature T and the length of the DNA fragments in the junctions, which determines the tunneling distance, we reveal a complex interplay between T, the length of DNA, and structural order on the mechanism of charge transport. Both the increase in the tunneling distance and the decrease in structural order result in a change in the mechanism of CT from coherent tunneling to incoherent tunneling (hopping). Our results highlight the importance of the interplay between structural order, tunneling distance, and temperature on the CT mechanism across DNA in molecular junctions. </p

    Contributory presentations/posters

    No full text
    corecore