11 research outputs found

    Selective bacterial separation of critical metals:Towards a sustainable method for recycling lithium ion batteries

    Get PDF
    The large scale recycling of lithium ion batteries (LIBs) is essential to satisfy global demands for the raw materials required to implement this technology as part of a clean energy strategy. However, despite what is rapidly becoming a critical need, an efficient and sustainable recycling process for LIBs has yet to be developed. Biological reactions occur with great selectivity under mild conditions, offering new avenues for the implementation of more environmentally sustainable processes. Here, we demonstrate a sequential process employing two bacterial species to recover Mn, Co and Ni, from vehicular LIBs through the biosynthesis of metallic nanoparticles, whilst Li remains within the leachate. Moreover the feasibility of Mn recovery from polymetallic solutions was demonstrated at semi-pilot scale in a 30 L bioreactor. Additionally, to provide insight into the biological process occurring, we investigated selectivity between Co and Ni using proteomics to identify the biological response and confirm the potential of a bio-based method to separate these two essential metals. Our approach determines the principles and first steps of a practical bio-separation and recovery system, underlining the relevance of harnessing biological specificity for recycling and up-cycling critical materials

    Selecting optimal support grids for super-resolution cryogenic correlated light and electron microscopy

    No full text
    Abstract Cryogenic transmission electron microscopy (cryo-TEM) and super-resolution fluorescence microscopy are two popular and ever improving methods for high-resolution imaging of biological samples. In recent years, the combination of these two techniques into one correlated workflow has gained attention as a promising route towards contextualizing and enriching cryo-TEM imagery. A problem that is often encountered in the combination of these methods is that of light-induced damage to the sample during fluorescence imaging that renders the sample structure unsuitable for TEM imaging. In this paper, we describe how absorption of light by TEM sample support grids leads to sample damage, and we systematically explore the importance of parameters of grid design. We explain how, by changing the grid geometry and materials, one can increase the maximum illumination power density in fluorescence microscopy by up to an order of magnitude. Finally, we demonstrate the significant improvements in super-resolution image quality that are enabled by the selection of support grids that are optimally suited for correlated cryo-microscopy

    Thinner is not always better: Optimising cryo lamellae for subtomogram averaging

    No full text
    Cryo-electron tomography (cryo-ET) is a powerful method to elucidate subcellular architecture and to structurally analyse biomolecules in situ by subtomogram averaging (STA). Specimen thickness is a key factor affecting cryo-ET data quality. Cells that are too thick for transmission imaging can be thinned by cryo-focused-ion-beam (cryo-FIB) milling. However, optimal specimen thickness for cryo-ET on lamellae has not been systematically investigated. Furthermore, the ions used to ablate material can cause damage in the lamellae, thereby reducing STA resolution. Here, we systematically benchmark the resolution depending on lamella thickness and the depth of the particles within the sample. Up to ca. 180 nm, lamella thickness does not negatively impact resolution. This shows that there is no need to generate very thin lamellae and thickness can be chosen such that it captures major cellular features. Furthermore, we show that gallium-ion-induced damage extends to depths of up to 30 nm from either lamella surface

    Selective bacterial separation of critical metals: a sustainable method for recycling lithium ion batteries

    No full text
    The large scale recycling of lithium ion batteries (LIBs) is essential to satisfy global demands for the raw materials required to implement this technology as part of a clean energy strategy. However, despite what is rapidly becoming a critical need, an efficient and sustainable recycling process for LIBs has yet to be developed. Biological reactions occur with great selectivity under mild conditions, offering new avenues for the implementation of more environmentally sustainable processes. Here, we demonstrate a sequential process employing two bacterial species to recover Mn, Co and Ni, from vehicular LIBs through the biosynthesis of metallic nanoparticles, whilst Li remains within the leachate. We investigated bio-selectivity between Co and Ni using proteomics, confirming control of the biological response. Our approach determines the principles and first steps of a practical bio-separation and recovery system, underlining the relevance of harnessing biological specificity for recycling and up-cycling critical material

    High-confidence 3D template matching for cryo-electron tomography

    No full text
    Cryo-electron tomography (CryoET) resolves individual macromolecules inside living cells. However, the complex composition and high density of cells challenge the faithful identification of features in tomograms. Here, we capitalize on recent advances in electron tomography and demonstrate that 3D template matching (TM) localizes a wide range of structures inside crowded eukaryotic cells with confidence 10 to 100-fold above the noise level. We establish a TM pipeline with systematically tuned parameters for automated, objective and comprehensive feature identification. High-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, lipid membranes and microtubules, and individual subunits, demonstrate that TM is generic. We resolve ~100-kDa proteins, connect the functional states of complexes to their cellular localization, and capture vaults carrying ribosomal cargo in situ. By capturing individual molecular events inside living cells with defined statistical confidence, high-confidence TM greatly speeds up the CryoET workflow and sets the stage for visual proteomics

    Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision

    Get PDF
    Abstract Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (−195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy
    corecore