32 research outputs found

    Graft-versus-host disease, but not graft-versus-leukemia immunity, is mediated by GM-CSF–licensed myeloid cells

    Full text link
    Allogeneic hematopoietic cell transplantation (allo-HCT) not only is an effective treatment for several hematologic malignancies but can also result in potentially life-threatening graft-versus-host disease (GvHD). GvHD is caused by T cells within the allograft attacking nonmalignant host tissues; however, these same T cells mediate the therapeutic graft-versus-leukemia (GvL) response. Thus, there is an urgent need to understand how to mechanistically uncouple GvL from GvHD. Using preclinical models of full and partial MHC-mismatched HCT, we here show that the granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by allogeneic T cells distinguishes between the two processes. GM-CSF drives GvHD pathology by licensing donor-derived phagocytes to produce inflammatory mediators such as interleukin-1β and reactive oxygen species. In contrast, GM-CSF did not affect allogeneic T cells or their capacity to eliminate leukemic cells, retaining undiminished GvL responses. Last, tissue biopsies and peripheral blood mononuclear cells from patients with grade IV GvHD showed an elevation of GM-CSF–producing T cells, suggesting that GM-CSF neutralization has translational potential in allo-HCT

    GM-CSF: from growth factor to central mediator of tissue inflammation

    Full text link
    The granulocyte-macrophage colony-stimulating factor (GM-CSF) was initially classified as a hematopoietic growth factor. However, unlike its close relatives macrophage CSF (M-CSF) and granulocyte CSF (G-CSF), the majority of myeloid cells do not require GM-CSF for steady-state myelopoiesis. Instead, in inflammation, GM-CSF serves as a communication conduit between tissue-invading lymphocytes and myeloid cells. Even though lymphocytes are in all likelihood the instigators of chronic inflammatory disease, GM-CSF-activated phagocytes are well equipped to cause tissue damage. The pivotal role of GM-CSF at the T cell:myeloid cell interface might shift our attention toward studying the function of the myeloid compartment in immunopathology. Targeting specifically the crosstalk between T cells and myeloid cells through GM-CSF holds promise for the development of therapeutics to combat chronic tissue inflammation. Here, we will review some of the major discoveries of the recent past, which indicate that GM-CSF is so much more than its name suggests

    Innate lymphoid cells as regulators of the tumor microenvironment

    Full text link
    As crucial players in innate immunity, Innate Lymphoid Cells (ILCs) have been distinctly associated with either tumor-promoting or tumor-inhibiting activities. This dichotomy arises from the high degree of heterogeneity and plasticity between the ILC family subsets. Also, the tissue microenvironment is crucial for the function of ILCs. Especially within the tumor niche, each of the ILC subsets participates in a complex network of interactions with other cells and molecules. Although extensive research has unraveled several aspects of the crosstalk ILCs establish with the tumor microenvironment (TME), numerous questions remain to be answered. Here, we will discuss a role for the different ILC subsets that goes beyond their direct effects on the tumor cells. Instead, we will highlight the ability of ILCs to communicate with the surrounding milieu and the impact this has on tumor progression

    Restoration of natural killer cell antimetastatic activity by IL12 and checkpoint blockade

    Full text link
    Immune checkpoint therapies target tumor antigen-specific T cells, but less is known about their effects on natural killer (NK) cells, which help control metastasis. In studying the development of lung metastases, we found that NK cells lose their cytotoxic capacity and acquire a molecular signature defined by the expression of coinhibitory receptors. In an effort to overcome this suppressive mechanism, we evaluated NK cell responses to the immunostimulatory cytokine IL12. Exposure to IL12 rescued the cytotoxicity of NK cells but also led to the emergence of an immature NK cell population that expressed high levels of the coinhibitory molecules PD-1, Lag-3, and TIGIT, thereby limiting NK cell-mediated control of pulmonary metastases. Notably, checkpoint blockade therapy synergized with IL12 to fully enable tumor control by NK cells, demonstrating that checkpoint blockers are not only applicable to enhance T cell-mediated immunotherapy, but also to restore the tumor-suppressive capacity of NK cell

    Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells

    Full text link
    Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD leukemia cells. This synergized with the allogeneic CD8 T cell response, leading to long-term survival in six mouse models of FLT3-ITD AML. Sorafenib-related IL-15 production caused an increase in CD8CD107aIFN-γ T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8 T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT

    Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis

    Get PDF
    Differentiation and homeostasis of natural killer (NK) cells relies on common gamma-chain (γc)-dependent cytokines, in particular IL-15. Consequently, NK cells do not develop in mice with targeted γc deletion. Herein we identify an alternative pathway of NK-cell development driven by the proinflammatory cytokine IL-12, which can occur independently of γc-signalling. In response to viral infection or upon exogenous administration, IL-12 is sufficient to elicit the emergence of a population of CD122+CD49b+ cells by targeting NK-cell precursors (NKPs) in the bone marrow (BM). We confirm the NK-cell identity of these cells by transcriptome-wide analyses and their ability to eliminate tumour cells. Rather than using the conventional pathway of NK-cell development, IL-12-driven CD122+CD49b+ cells remain confined to a NK1.1lowNKp46low stage, but differentiate into NK1.1+NKp46+ cells in the presence of γc-cytokines. Our data reveal an IL-12-driven hard-wired pathway of emergency NK-cell lymphopoiesis bypassing steady-state γc-signalling

    Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes

    Full text link
    Brain malignancies can either originate from within the CNS (gliomas) or invade from other locations in the body (metastases). A highly immunosuppressive tumor microenvironment (TME) influences brain tumor outgrowth. Whether the TME is predominantly shaped by the CNS micromilieu or by the malignancy itself is unknown, as is the diversity, origin, and function of CNS tumor-associated macrophages (TAMs). Here, we have mapped the leukocyte landscape of brain tumors using high-dimensional single-cell profiling (CyTOF). The heterogeneous composition of tissue-resident and invading immune cells within the TME alone permitted a clear distinction between gliomas and brain metastases (BrM). The glioma TME presented predominantly with tissue-resident, reactive microglia, whereas tissue-invading leukocytes accumulated in BrM. Tissue-invading TAMs showed a distinctive signature trajectory, revealing tumor-driven instruction along with contrasting lymphocyte activation and exhaustion. Defining the specific immunological signature of brain tumors can facilitate the rational design of targeted immunotherapy strategies
    corecore