26 research outputs found

    Pathway deregulation and expression QTLs in response to Actinobacillus pleuropneumoniae infection in swine

    Get PDF
    Actinobacillus (A.) pleuropneumoniae is among the most important pathogens in pig. The agent causes severe economic losses due to decreased performance, the occurrence of acute or chronic pleuropneumonia, and an increase in death incidence. Since therapeutics cannot be used in a sustainable manner, and vaccination is not always available, new prophylactic measures are urgently needed. Recent research has provided evidence for a genetic predisposition in susceptibility to A. pleuropneumoniae in a Hampshire × German Landrace F2 family with 170 animals. The aim of the present study is to characterize the expression response in this family in order to unravel resistance and susceptibility mechanisms and to prioritize candidate genes for future fine mapping approaches. F2 pigs differed distinctly in clinical, pathological, and microbiological parameters after challenge with A. pleuropneumoniae. We monitored genome-wide gene expression from the 50 most and 50 least susceptible F2 pigs and identified 171 genes differentially expressed between these extreme phenotypes. We combined expression QTL analyses with network analyses and functional characterization using gene set enrichment analysis and identified a functional hotspot on SSC13, including 55 eQTL. The integration of the different results provides a resource for candidate prioritization for fine mapping strategies, such as TF, TFRC, RUNX1, TCN1, HP, CD14, among others

    Identification of QTL affecting resistance/susceptibility to acute Actinobacillus pleuropneumoniae infection in swine

    No full text
    Actinobacillus pleuropneumoniae is among the most important pathogens worldwide in pig production. The agent can cause severe economic losses due to decreased performance, acute or chronic pleuropneumonia and an increased incidence of death. Therapeutics cannot be used in a sustainable manner, and vaccination is not always available, but discovering more about host defence and disease mechanisms might lead to new methods of prophylaxis. The aim of the present study was to detect quantitative trait loci (QTL) associated with resistance/susceptibility to A. pleuropneumoniae. Under controlled conditions, 170 F2 animals of a Hampshire/Landrace family, with known differences in founder populations regarding A. pleuropneumoniae resistance, were challenged with an A. pleuropneumoniae serotype 7 aerosol followed by a detailed clinical, radiographic, ultrasonographic, pathological and bacteriological examination. F2 pigs were genotyped with 159 microsatellite markers. Significant QTL were identified on Sus scrofa chromosomes (SSC) 2, 6, 12, 13, 16, 17 and 18. They explained 6–22 % of phenotypic variance. One QTL on SSC2 reached significance on a genome-wide level for five associated phenotypic traits. A multiple regression analysis revealed a combinatory effect of markers SWR345 (SSC2) and S0143 (SSC12) on Respiratory Health Score, Clinical Score and the occurrence of death. The results indicate the genetic background of A. pleuropneumoniae resistance in swine and provide new insights into the genetic architecture of resistance/susceptibility to porcine pleuropneumonia. The results will be helpful in identifying the underlying genes and mechanisms

    Pseudomonas aeruginosa Microevolution during Cystic Fibrosis Lung Infection Establishes Clones with Adapted Virulence

    No full text
    Rationale: During long-term lung infection in patients with cystic fibrosis (CF), Pseudomonas aeruginosa strains develop mutations leading to clonal expansion. This microevolution is believed to be correlated with a reduced virulence. Objectives: We tested this hypothesis in models of lung infection, using mice with different genetic backgrounds. Methods: From infected airways of six patients with CF, 25 P. aeruginosa clones were isolated during a period of up to 16.3 years and genotypically and phenotypically characterized. Virulence of the 8 early, 6 intermediate, and 11 late CF isolates and 5 environmental strains was assessed by monitoring acute mortality versus survival and P. aeruginosa chronic persistence versus lung clearance in mice of different genetic backgrounds, including CF mice. Measurements and Main Results: Different patients harbored clonally unrelated strains, but early, intermediate, and late P. aeruginosa isolates from single patients were clonally related, allowing comparative in vivo analysis. Although late isolates were attenuated in causing acute mortality in the mouse models, compared with early and intermediate clonal isolates and environmental strains, they did not differ from early and intermediate clonal isolates in their capacity to establish chronic infection and cause extensive inflammation in the murine respiratory tract. Conclusions: Our findings indicate that clonal expansion of P. aeruginosa strains during microevolution within CF lungs leads to populations with altered but not reduced virulence. These P. aeruginosa clones with adapted virulence play a critical role in the pathogenesis of chronic infections and may serve to define virulence determinants as targets for novel therapies

    Incidence of Arterial Hypotension in Patients Receiving Peroral or Continuous Intra-arterial Nimodipine After Aneurysmal or Perimesencephalic Subarachnoid Hemorrhage

    No full text
    BackgroundOral nimodipine is used for prophylaxis and treatment of delayed cerebral ischemia in patients with aneurysmal or perimesencephalic subarachnoid hemorrhage (SAH). In cases of serious refractory cerebral vasospasm, a continuous intra-arterial (IA) infusion of nimodipine (CIAN) may be required to avoid cerebral ischemia. Nimodipine can cause arterial hypotension requiring either a dosage reduction or its discontinuation. Aim of the present study was to examine the effect of different nimodipine formulations on arterial blood pressure in aneurysmal or perimesencephalic SAH patients and to measure the plasma levels after both, peroral administration as tablet or solution and IA infusion.MethodsIn a prospective setting, over a 1-year observation period, data on the course of arterial blood pressure and nimodipine dosage were collected for 38 patients undergoing treatment for aneurysmal or perimesencephalic SAH in an intensive care unit. In addition, plasma concentrations of nimodipine were measured by liquid chromatography-tandem mass spectrometry.ResultsThe intended full dose of 60mg of nimodipine given orally every 4h could only be administered on 57.2% of the examined days. Ninety-seven episodes of relevant arterial hypotension probably caused by the administration of nimodipine were observed within the first 14days of treatment. Drops in blood pressure occurred about three times as often after administration of nimodipine as oral solution than as tablet. However, there were no differences in nimodipine plasma levels between the two formulations. In patients suffering from higher-grade SAH, arterial hypotension and consequent dosage reduction or discontinuation of nimodipine were more frequent than in patients with lower-grade SAH. Plasma concentrations of nimodipine during CIAN did not exceed those achieved by oral administration.ConclusionsDosage reduction or discontinuation of oral nimodipine is often necessary in patients with higher-grade SAH. Oral nimodipine solutions cause drops in blood pressure more frequently than tablets. Intra-arterial infusion rates of less than 1mg/h result in venous plasma concentrations of nimodipine similar to those observed after oral application of 60mg every 4 h

    Impaired TLR4 and HIF expression in cystic fibrosis bronchial epithelial cells downregulates hemeoxygenase-1 and alters iron homeostasis<em> in vitro</em>.

    No full text
    Hemeoxygenase-1 (HO-1), an inducible heat shock protein, is upregulated in response to multiple cellular insults via oxidative stress, lipopolysaccharides (LPS), and hypoxia. In this study, we investigated in vitro the role of Toll-like receptor 4 (TLR4), hypoxia-inducible factor 1&alpha; (HIF-1&alpha;), and iron on HO-1 expression in cystic fibrosis (CF). Immunohistochemical analysis of TLR4, HO-1, ferritin, and HIF-1&alpha; were performed on lung sections of CFTR-/- and wild-type mice. CFBE41o- and 16HBE14o- cell lines were employed for in vitro analysis via immunoblotting, immunofluorescence, real-time PCR, luciferase reporter gene analysis, and iron quantification. We observed a reduced TLR4, HIF-1&alpha;, HO-1, and ferritin in CFBE41o- cell line and CF mice. Knockdown studies using TLR4-siRNA in 16HBE14o- revealed significant decrease of HO-1, confirming the role of TLR4 in HO-1 downregulation. Inhibition of HO-1 using tin protoporphyrin in 16HBE14o- cells resulted in increased iron levels, suggesting a probable role of HO-1 in iron accumulation. Additionally, sequestration of excess iron using iron chelators resulted in increased hypoxia response element response in CFBE41o- and 16HBE14o-, implicating a role of iron in HIF-1&alpha; stabilization and HO-1. To conclude, our in vitro results demonstrate that multiple regulatory factors, such as impaired TLR4 surface expression, increased intracellular iron, and decreased HIF-1&alpha;, downregulate HO-1 expression in CFBE41o- cells
    corecore