96 research outputs found
Participation Traders Separating Waste In Pasar Baru Tampan Sub District Pekanbaru City
Garbage is defined as something that is not used anymore, unused, or something that is thrown away, which is derived from human activities and does not happen by itself. The market is one of the human activities that produce large amounts of garbage every day, when the waste sorting system is not good, it will make it difficult to carry out waste management and will have an impact on health directly or indirectly. This study aims to determine the factors associated with the participation of traders in waste sorting in Tampan Sub district Pasar Baru Pekanbaru.This study is quantitative research with cross sectional design. This research was conducted April 2015, sample in this study is 79 merchants. Data were collected by using questionnaires and observation. Data analysis for bivariate with chi-square test with 95% confidence level with α = 0.05. The results showed that there is a relationship between education (OR = 2,60 ; CI: 1,08-3,67), socialization (OR = 3,10; CI: 2,58-5,99) availability of trash waste (OR = 8,25 ; CI: 2,98-7,55 with waste sorting participation
Organic-Silica Interactions in Saline:Elucidating the Structural Influence of Calcium in Low-Salinity Enhanced Oil Recovery
Abstract Enhanced oil recovery using low-salinity solutions to sweep sandstone reservoirs is a widely-practiced strategy. The mechanisms governing this remain unresolved. Here, we elucidate the role of Ca2+ by combining chemical force microscopy (CFM) and molecular dynamics (MD) simulations. We probe the influence of electrolyte composition and concentration on the adsorption of a representative molecule, positively-charged alkylammonium, at the aqueous electrolyte/silica interface, for four electrolytes: NaCl, KCl, MgCl2, and CaCl2. CFM reveals stronger adhesion on silica in CaCl2 compared with the other electrolytes, and shows a concentration-dependent adhesion not observed for the other electrolytes. Using MD simulations, we model the electrolytes at a negatively-charged amorphous silica substrate and predict the adsorption of methylammonium. Our simulations reveal four classes of surface adsorption site, where the prevalence of these sites depends only on CaCl2 concentration. The sites relevant to strong adhesion feature the O− silica site and Ca2+ in the presence of associated Cl−, which gain prevalence at higher CaCl2 concentration. Our simulations also predict the adhesion force profile to be distinct for CaCl2 compared with the other electrolytes. Together, these analyses explain our experimental data. Our findings indicate in general how silica wettability may be manipulated by electrolyte concentration
Recommended from our members
Visualizing ribonuclease digestion of RNA-like polymers produced by hot wet-dry cycles
Polymerization of nucleotides under prebiotic conditions simulating the early Earth has been extensively studied. Several independent methods have been used to verify that RNA-like polymers can be produced by hot wet-dry cycling of nucleotides. However, it has not been shown that these RNA-like polymers are similar to biological RNA with 3'-5' phosphodiester bonds. In the results described here, RNA-like polymers were generated from 5'-monophosphate nucleosides AMP and UMP. To confirm that the polymers resemble biological RNA, ribonuclease A should catalyze hydrolysis of the 3'-5' phosphodiester bonds between pyrimidine nucleotides to each other or to purine nucleotides, but not purine-purine nucleotide bonds. Here we show AFM images of specific polymers produced by hot wet-dry cycling of AMP, UMP and AMP/UMP (1:1) solutions on mica surfaces, before and after exposure to ribonuclease A. AMP polymers were unaffected by ribonuclease A but UMP polymers disappeared. This indicates that a major fraction of the bonds in the UMP polymers is indeed 3'-5' phosphodiester bonds. Some of the polymers generated from the AMP/UMP mixture also showed clear signs of cleavage. Because ribonuclease A recognizes the ester bonds in the polymers, we show for the first time that these prebiotically produced polymers are in fact similar to biological RNA but are likely to be linked by a mixture of 3'-5' and 2'-5' phosphodiester bonds
The effect of ionic strength on oil adhesion in sandstone - the search for the low salinity mechanism
Core flood and field tests have demonstrated that decreasing injection water salinity increases oil recovery from sandstone reservoirs. However, the microscopic mechanism behind the effect is still under debate. One hypothesis is that as salinity decreases, expansion of the electrical double layer decreases attraction between organic molecules and pore surfaces. We have developed a method that uses atomic force microscopy (AFM) in chemical force mapping (CFM) mode to explore the relationship between wettability and salinity. We functionalised AFM tips with alkanes and used them to represent tiny nonpolar oil droplets. In repeated measurements, we brought our “oil” close to the surface of sand grains taken from core plugs and we measured the adhesion between the tip and sample. Adhesion was constant in high salinity solutions but below a threshold of 5,000 to 8,000 ppm, adhesion decreased as salinity decreased, rendering the surface less oil wet. The effect was consistent, reproducible and reversible. The threshold for the onset of low salinity response fits remarkably well with observations from core plug experiments and field tests. The results demonstrate that the electric double layer force always contributes at least in part to the low salinity effect, decreasing oil wettability when salinity is low
The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs
<p>Abstract</p> <p>Background</p> <p>Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by <it>Plasmodium falciparum </it>parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target.</p> <p>Methods</p> <p>A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob.</p> <p>Results</p> <p>Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of <it>P. falciparum</it>-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules.</p> <p>Conclusions</p> <p>High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.</p
Visualizing RNA polymers produced by hot wet-dry cycling
It is possible that the transition from abiotic systems to life relied on RNA polymers that served as ribozyme-like catalysts and for storing genetic information. The source of such polymers is uncertain, but previous investigations reported that wet–dry cycles simulating prebiotic hot springs provide sufficient energy to drive condensation reactions of mononucleotides to form oligomers and polymers. The aim of the study reported here was to verify this claim and visualize the products prepared from solutions composed of single mononucleotides and 1:1 mixture of two mononucleotides. Therefore, we designed experiments that allowed comparisons of all such mixtures representing six combinations of the four mononucleotides of RNA. We observed irregular stringy patches and crystal strands when wet-dry cycling was performed at room temperature (20 °C). However, when the same solutions were exposed to wet–dry cycles at 80 °C, we observed what appeared to be true polymers. Their thickness was consistent with RNA-like products composed of covalently bonded monomers, while irregular strings and crystal segments of mononucleotides dried or cycled at room temperature were consistent with structures assembled and stabilized by weak hydrogen bonds. In a few instances we observed rings with short polymer attachments. These observations are consistent with previous claims of polymerization during wet–dry cycling. We conclude that RNA-like polymers and rings could have been synthesized non-enzymatically in freshwater hot springs on the prebiotic Earth with sizes sufficient to fold into ribozymes and genetic molecules required for life to begin
- …